Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ.
View Article and Find Full Text PDFJ Cardiovasc Surg (Torino)
October 2020
Tissue engineering has garnered significant attention for its potential to address the predominant modes of failure of small diameter vascular prostheses, namely mid-graft thrombosis and anastomotic intimal hyperplasia. In this review, we described two main features underpinning the promise of tissue-engineered vascular grafts: the incorporation of an antithrombogenic endothelium, and the generation of a structurally and biomechanically mimetic extracellular matrix. From the early attempts at the in-vitro endothelialization of vascular prostheses in the 1970s through to the ongoing clinical trials of fully tissue-engineered vascular grafts, the historical advancements and unresolved challenges that characterize the current state-of-the-art are summarized in a manner that establishes a guide for the development of an effective vascular prosthesis for small diameter arterial reconstruction.
View Article and Find Full Text PDF