Publications by authors named "Katy van Kirk"

A series of diphenylpyridylethanamine-based inhibitors of cholesteryl ester transfer protein with aminoheterocycles appended onto the N-terminus of the chemotype were explored as urea mimetics. Potent compounds were discovered and were further optimized to improve metabolic stability and PXR transactivation profile.

View Article and Find Full Text PDF

A series of compounds which exhibited good human CCR1 binding and functional potency was modified resulting in the discovery of a novel series of high affinity, functionally potent antagonists of the CCR1 receptor. Issues of PXR activity, ion-channel potency, and poor metabolic stability were addressed by the addition of a hydroxyl group to an otherwise lipophilic area in the molecule resulting in the discovery of preclinical candidate BMS-457 for the treatment of rheumatoid arthritis.

View Article and Find Full Text PDF

A series of novel, potent CCR1 inhibitors was developed from a moderately active hit using an iterative parallel synthesis approach. The initial hit (composed of three subunits: an amine, a central amino acid, and an N-terminal cap) became the basis for a series of parallel chemical libraries designed to generate SAR data. Libraries were synthesized that explored each of the three subunits; the CCR1 binding data obtained revealed the following: (1) changes to the amine are not well tolerated; (2) small alkylamino acids are preferred in the center of the molecule; (3) substitutions at the N-terminus are generally well tolerated.

View Article and Find Full Text PDF

A series of diphenylpyridylethanamine (DPPE) derivatives was identified exhibiting potent CETP inhibition. Replacing the labile ester functionality in the initial lead 7 generated a series of amides and ureas. Further optimization of the DPPE series for potency resulted in the discovery of cyclopentylurea 15d, which demonstrated a reduction in cholesterol ester transfer activity (48% of predose level) in hCETP/apoB-100 dual transgenic mice.

View Article and Find Full Text PDF

The synthesis, structure-activity relationships (SAR), and biological results of pyridyl-substituted azaindole based tricyclic inhibitors of IKK2 are described. Compound 4m demonstrated potent in vitro potency, acceptable pharmacokinetic and physicochemical properties, and efficacy when dosed orally in a mouse model of inflammatory bowel disease.

View Article and Find Full Text PDF

Derived from the HTS hit 1, a series of hydroxyisoquinolines was discovered as potent and selective 11β-HSD1 inhibitors with good cross species activity. Optimization of substituents at the 1 and 4 positions of the isoquinoline group in addition to the core modifications, with a special focus on enhancing metabolic stability and aqueous solubility, resulted in the identification of several compounds as potent advanced leads.

View Article and Find Full Text PDF

The design and synthesis of a novel series of oxazole-, thiazole-, and imidazole-based inhibitors of IkappaB kinase (IKK) are reported. Biological activity was improved compared to the pyrazolopurine lead, and the expedient synthesis of the new tricyclic systems allowed for efficient exploration of structure-activity relationships. This, combined with an iterative rat cassette dosing strategy, was used to identify compounds with improved pharmacokinetic (PK) profiles to advance for in vivo evaluation.

View Article and Find Full Text PDF

The trisubstituted pyrimidine 1 was identified through high-throughput screening as a novel calcium-sensing receptor (CaSR) antagonist. Small molecule CaSR antagonists and/or negative allosteric modulators have the potential to act as an anabolic agent for the treatment of osteoporosis. The investigation of structure-activity relationships around 1 resulted in the identification of 18c and 18d, which showed efficacy at promoting PTH release in vivo and exhibited improved potency and solubility over the original lead 1.

View Article and Find Full Text PDF

A G-Protein-coupled receptor-targeted library of aryloxypropanolamines and aryloxybutanolamines was efficiently executed using a novel, polymer-supported acyclic acetal linker, producing compounds in good yields and purities.

View Article and Find Full Text PDF

Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored.

View Article and Find Full Text PDF

An efficient method for the solid-supported synthesis of 5-N-alkylamino and 5-N-arylamino pyrazoles is described. This method is general and mild and utilizes readily accessible resin-immobilized beta-ketoamides 2 as starting materials for the preparation of 1. Resin-immobilized beta-ketoamide, aryl-, or alkylhydazine and Lawesson's reagent are suspended in a mixture of THF/Py and heated at 50-55 degrees C to give a resin-bound 5-aminopyrazole, that is liberated from the solid support by treatment with TFA.

View Article and Find Full Text PDF