Publications by authors named "Katy L Chubb"

Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST's Mid-Infrared Instrument.

View Article and Find Full Text PDF

The recent inference of sulfur dioxide (SO) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations suggests that photochemistry is a key process in high-temperature exoplanet atmospheres. This is because of the low (<1 ppb) abundance of SO under thermochemical equilibrium compared with that produced from the photochemistry of HO and HS (1-10 ppm). However, the SO inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.

View Article and Find Full Text PDF
Article Synopsis
  • Photochemistry plays a critical role in regulating the composition and stability of planetary atmospheres, but clear photochemical products have not been detected in exoplanets until recently.* -
  • The James Webb Space Telescope (JWST) detected sulfur dioxide (SO) in the atmosphere of the exoplanet WASP-39b, suggesting photochemical processes create SO in this gas giant's atmosphere.* -
  • The presence of SO, linked to the oxidation of hydrogen sulfide, indicates WASP-39b has high metallicity (about 10 times that of the sun), and its spectral features could help understand more about similar exoplanets.*
View Article and Find Full Text PDF
Article Synopsis
  • Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres helps to understand their chemical processes and formation history.
  • The James Webb Space Telescope (JWST) allows for advanced observations of exoplanets, notably WASP-39b, providing insights through time-series data with high precision in a new wavelength range.
  • Findings include the detection of water vapor in the atmosphere with a high metallicity (1-100 times that of the Sun) and a low C/O ratio, suggesting the potential for significant solid material accretion during formation or chemical disequilibrium in the atmosphere.
View Article and Find Full Text PDF

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST.

View Article and Find Full Text PDF

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref.

View Article and Find Full Text PDF

The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiation conditions. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour and carbon monoxide in their atmospheres; this has been studied in terms of scaled solar composition under the usual assumption of chemical equilibrium.

View Article and Find Full Text PDF

Special treatment is required for ro-vibrational calculations involving polyatomic molecules of linear geometry in order to avoid singularities in the kinetic energy operator. Here we present a variational approach which allows calculations involving such configurations, with a set of 3N-5 linearized coordinates used to represent the vibrations. This approach has been implemented as part of the variational nuclear motion program TROVE (Theoretical ROVibrational Energies).

View Article and Find Full Text PDF

Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field.

View Article and Find Full Text PDF