Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism.
View Article and Find Full Text PDFHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites.
View Article and Find Full Text PDFThe cellular protein BST2 (also known as tetherin) acts as a major intrinsic antiviral protein that prevents the release of enveloped viruses by trapping nascent viral particles at the surface of infected cells. Viruses have evolved specific strategies to displace BST2 from viral budding sites in order to promote virus egress. In HIV-1, the accessory protein Vpu counters BST2 antiviral activity and promotes sorting of BST2 for lysosomal degradation.
View Article and Find Full Text PDFBST2 (bone marrow stromal antigen 2)/tetherin is a restriction factor of enveloped viruses, which blocks the release of viral particles. HIV-1 encodes proteins that antagonize this innate barrier, including the accessory protein Vpu. Here, we investigate whether the autophagy pathway and/or ATG proteins are hijacked by HIV-1 Vpu to circumvent BST2 restriction of viral release.
View Article and Find Full Text PDFViruses such as lentiviruses that are responsible for long lasting infections have to evade several levels of cellular immune mechanisms to persist and efficiently disseminate in the host. Over the past decades, much evidence has emerged regarding the major role of accessory proteins of primate lentiviruses, human immunodeficiency virus and simian immunodeficiency virus, in viral evasion from the host immune defense. This short review will provide an overview of the mechanism whereby the accessory protein Vpu contributes to this escape.
View Article and Find Full Text PDFThe functions of Beclin-1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K-III complex. Here, we describe a new role for Beclin-1 in mitotic chromosome congression that is independent of the PI3K-III complex and its role in autophagy. Beclin-1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP-E, CENP-F and ZW10, and, consequently, the cells present severe problems in chromosome congression.
View Article and Find Full Text PDFThe cellular protein "Bone marrow stromal antigen 2" (BST2 also called Tetherin, CD317, HM1.24) was identified as a major mediator of the innate immune defense against the dissemination of enveloped viruses. BST2 was shown to physically trap the de novo formed viral particles at the surface of infected cells, thereby reducing viral release.
View Article and Find Full Text PDFRetroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation.
View Article and Find Full Text PDFThe Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show an additional role for the ESCRT machinery in HIV-1 release. BST-2/tetherin is a restriction factor that impedes HIV release by tethering mature virus particles to the plasma membrane.
View Article and Find Full Text PDFMacrophages are among the major targets of HIV-1 infection and play a key role in viral pathogenesis. Identification of the cellular cofactors involved in the production of infectious HIV-1 from macrophages is thus crucial. Here, we investigated the role of the cellular cofactor TIP47 in HIV-1 morphogenesis in primary macrophages.
View Article and Find Full Text PDFThe Nef protein of human immunodeficiency virus type 1 downregulates the CD4 coreceptor from the surface of host cells by accelerating the rate of CD4 endocytosis through a clathrin/AP-2 pathway. Herein, we report that Nef has the additional function of targeting CD4 to the multivesicular body (MVB) pathway for eventual delivery to lysosomes. This targeting involves the endosomal sorting complex required for transport (ESCRT) machinery.
View Article and Find Full Text PDFMol Biol Cell
September 2005
The limiting membrane of the lysosome contains a group of transmembrane glycoproteins named lysosome-associated membrane proteins (Lamps). These proteins are targeted to lysosomes by virtue of tyrosine-based sorting signals in their cytosolic tails. Four adaptor protein (AP) complexes, AP-1, AP-2, AP-3, and AP-4, interact with such signals and are therefore candidates for mediating sorting of the Lamps to lysosomes.
View Article and Find Full Text PDFAmong the pleiotropic effects of Nef proteins of HIV and simian immunodeficiency virus (SIV), down-modulation of cell surface expression of CD4 is a prominent phenotype. It has been presumed that Nef proteins accelerate endocytosis of CD4 by linking the receptor to the AP-2 clathrin adaptor. However, the related AP-1 and AP-3 adaptors have also been shown to interact with Nef, hinting at role(s) for these complexes in the intracellular retention of CD4.
View Article and Find Full Text PDFhuman immunodeficiency virus type 1 (HIV-1) Nef interacts with the clathrin-associated AP-1 and AP-3 adaptor complexes, stabilizing their association with endosomal membranes. These findings led us to hypothesize a general impact of this viral protein on the endosomal system. Here, we have shown that Nef specifically disturbs the morphology of the early/recycling compartment, inducing a redistribution of early endosomal markers and a shortening of the tubular recycling endosomal structures.
View Article and Find Full Text PDFAP-3 is a heterotetrameric adaptor involved in the biogenesis of lysosome-related organelles. The function of AP-3 as an adaptor relies on its ability to bind to membranes in an Arf-dependent fashion and to recognize sorting signals in the cytosolic tails of the transmembrane cargo. Here, we report an interdomain interaction involving the ear domain of the delta subunit and the sigma3 subunit of AP-3.
View Article and Find Full Text PDFThe sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial.
View Article and Find Full Text PDFHere, we report that human immunodeficiency virus type 1 (HIV-1) Env glycoprotein is located mainly in the trans-Golgi network (TGN) due to determinants present in the cytoplasmic domain of the transmembrane gp41 glycoprotein (TMgp41). Internalization assays demonstrated that Env present at the cell surface returns to the TGN. We found that the cytoplasmic domain of TMgp41 binds to TIP47, a protein required for the transport of mannose-6-phosphate receptors from endosomes to the TGN.
View Article and Find Full Text PDFThe maximal virulence of HIV-1 requires Nef, a virally encoded peripheral membrane protein. Nef binds to the adaptor protein (AP) complexes of coated vesicles, inducing an expansion of the endosomal compartment and altering the surface expression of cellular proteins including CD4 and class I major histocompatibility complex. Here, we show that Nef stabilizes the association of AP-1 and AP-3 with membranes.
View Article and Find Full Text PDF