Background: MicroRNAs (miRNAs) are short, noncoding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. The miRNAs, MIR-15a/16-1, at chromosome band 13q14 are down-regulated in the majority of patients with chronic lymphocytic leukaemia (CLL).
View Article and Find Full Text PDFChromosome 13q deletions are common in multiple myeloma and other cancers, demonstrating the importance of this region in tumorigenesis. We used a novel single nucleotide polymorphism (SNP)-based technique, digital SNP (dSNP), to identify loss of heterozygosity (LOH) at chromosome 13q in paraffin-embedded bone marrow biopsies from 22 patients with multiple myeloma. We analyzed heterozygous SNPs at 13q for the presence of allelic imbalances and examined the results by sequential probability ratio analysis.
View Article and Find Full Text PDFDeletions of chromosome 13q14 are common in chronic lymphocytic leukemia and other cancers, demonstrating the importance of this region in tumorigenesis. We report the use of two single-nucleotide polymorphism (SNP)-based techniques to determine 13q loss of heterozygosity (LOH) status in 15 patients with CLL: (i) digital SNP (dSNP), where analysis of heterozygous SNPs detects allelic imbalances, and (ii) DNA sequencing, where LOH is identified by comparison of allelic peak heights in normal and neoplastic cells. The SNP-based techniques were compared with established molecular techniques, fluorescence in situ hybridization and multiplex ligation-dependent probe amplification, to determine their utility and relative sensitivity.
View Article and Find Full Text PDFBackground: Many different techniques have been designed for the quantification of JAK2V617F allelic burden, sometimes producing discrepant results.
Design And Methods: JAK2V617F quantification techniques were compared among 16 centers using 11 assays based on quantitative polymerase chain reaction (with mutation-specific primers or probes, or fluorescent resonance energy transfer/melting curve analysis), allele-specific polymerase chain reaction, conventional sequencing or pyrosequencing.
Results: A first series of blinded samples (granulocyte DNA, n=29) was analyzed.
Achieving a specific diagnosis of polycythemia vera (PV) and other myeloproliferative disorders (MPDs) is often costly and complex. However, the recent identification of a V617F mutation in the JH2 domain of the JAK2 gene in a high proportion of patients suffering from MPDs may provide confirmation of a diagnosis. This is an acquired mutation and, as such, may only be present in a small number of cells within a sample.
View Article and Find Full Text PDF