Background And Purpose: Precise and individualized targeting of the ventral intermediate thalamic nucleus for the MR-guided focused ultrasound is crucial for enhancing treatment efficacy and avoiding undesirable side effects. In this study, we tested the hypothesis that the spatial relationships between Thalamus Optimized Multi Atlas Segmentation derived segmentations and the post-focused ultrasound lesion can predict post-operative side effects in patients treated with MR-guided focused ultrasound.
Materials And Methods: We retrospectively analyzed 30 patients (essential tremor, n = 26; tremor-dominant Parkinson's disease, n = 4) who underwent unilateral ventral intermediate thalamic nucleus focused ultrasound treatment.
While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.
View Article and Find Full Text PDFThe striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice.
View Article and Find Full Text PDFThe striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice.
View Article and Find Full Text PDFBackground: Deep Brain Stimulation (DBS) for dystonia is usually targeted to the globus pallidus internus (GPi), though stimulation of the ventral-intermediate nucleus of the thalamus (Vim) can be an effective treatment for phasic components of dystonia including tremor. We report on a patient who developed a syndrome of bilateral upper limb postural and action tremor and progressive cervical dystonia with both phasic and tonic components which were responsive to Vim DBS. We characterize and quantify this effect using markerless-3D-kinematics combined with accelerometry.
View Article and Find Full Text PDFObjective: In patients with Parkinson Disease (PD), self-initiated or internally cued (IC) actions are thought to be compromised by the disease process, as exemplified by impairments in action initiation. In contrast, externally-cued (EC) actions which are made in response to sensory prompts can restore a remarkable degree of movement capability in PD, particularly alleviating freezing-of-gait. This study investigates the electrophysiological underpinnings of movement facilitation in PD through visuospatial cuing, with particular attention to the dynamics within the posterior parietal cortex (PPC) and lateral premotor cortex (LPMC) axis of the dorsal visual stream.
View Article and Find Full Text PDFObjective: Suppression of local and network alpha and beta oscillations in the human basal ganglia-thalamocortical (BGTC) circuit is a prominent feature of movement, including suppression of local alpha/beta power, cross-region beta phase coupling, and cortical and subcortical phase-amplitude coupling (PAC). We hypothesized that network-level coupling is more directly related to movement execution than local power changes, given the role of pathological network hypersynchrony in movement disorders such as Parkinson disease (PD). Understanding the specificity of these movement-related signals is important for designing novel therapeutics.
View Article and Find Full Text PDFBackground: Parkinson disease (PD) patients have difficulty with self-initiated (SI) movements, presumably related to basal ganglia thalamocortical (BGTC) circuit dysfunction, while showing less impairment with externally cued (EC) movements.
Objectives: We investigate the role of BGTC in movement initiation and the neural underpinning of impaired SI compared to EC movements in PD using multifocal intracranial recordings and correlating signals with symptom severity.
Methods: We compared time-resolved neural activities within and between globus pallidus internus (GPi) and motor cortex during between SI and EC movements recorded invasively in 13 PD patients undergoing deep brain stimulation implantation.
Introduction: Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy.
Methods: 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions.
Philos Trans R Soc Lond B Biol Sci
December 2014
Humans have an automatic tendency to imitate others. Previous studies on how we control these tendencies have focused on reactive mechanisms, where inhibition of imitation is implemented after seeing an action. This work suggests that reactive control of imitation draws on at least partially specialized mechanisms.
View Article and Find Full Text PDFStimulus-response compatibility (SRC)-the fact that some stimulus-response pairs are faster than others-is attributed in part to automatic activation of the stimulus-compatible response representation. Cognitive models of SRC propose that automatic response activation can be strategically suppressed if the automatic response is likely to interfere with behavior; in particular, suppression is thought to occur in preparation for incompatible responses and when the required stimulus-response mapping is unknown before stimulus presentation. We test this preparatory suppression hypothesis in the context of imitation, a special form of SRC particularly relevant to human social behavior.
View Article and Find Full Text PDFPeople preferentially imitate others who are similar to them or have high social status. Such imitative biases are thought to have evolved because they increase the efficiency of cultural acquisition. Here we focused on distinguishing between self-similarity and social status as two candidate mechanisms underlying neural responses to a person's race during imitation.
View Article and Find Full Text PDFHumans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions.
View Article and Find Full Text PDFImitation plays a central role in the acquisition of culture. People preferentially imitate others who are self-similar, prestigious or successful. Because race can indicate a person's self-similarity or status, race influences whom people imitate.
View Article and Find Full Text PDFUsing functional magnetic resonance imaging, we show that a distributed fronto-parietal visuomotor integration network is recruited to overcome automatic responses to both biological and nonbiological cues. Activity levels in these areas are similar for both cue types. The functional connectivity of this network, however, reveals differential coupling with thalamus and precuneus (biological cues) and extrastriate cortex (nonbiological cues).
View Article and Find Full Text PDFWe examined the semantic impairment for natural kinds in patients with probable Alzheimer's disease (AD) and semantic dementia (SD) using an inductive reasoning paradigm. To learn about the relationships between natural kind exemplars and how these are distinguished from manufactured artifacts, subjects judged the strength of arguments such as "Humans have a chemical called sebum. Therefore, frogs have a chemical called sebum.
View Article and Find Full Text PDFWe examined the implicit acquisition and mental representation of a novel verb in patients with probable Alzheimer's disease (AD). Patients were exposed to the new verb in a naturalistic manner as part of a simple picture story. We probed grammatical, semantic and thematic matrix knowledge of the verb soon after presentation and again 1 week later.
View Article and Find Full Text PDFPatients with corticobasal degeneration (CBD) have calculation impairments. This study examined whether impaired number knowledge depends on verbal mediation. We focused particularly on knowledge of very small numbers, where there is a precise relationship between a cardinality and its number concept, but little hypothesized role for verbal mediation.
View Article and Find Full Text PDFObjectives: Our social cognition model posits that social knowledge and executive resources guide interpersonal decision making. We investigated this model by examining the resolution of standardised social dilemmas in patients with a social and executive disorder (SOC/EXEC) caused by frontotemporal dementia (FTD).
Methods: Patients with SOC/EXEC (n = 12) and those with progressive aphasia (APH, n = 14) completed measures requiring resolution of social dilemmas (Guilford's Cartoon Predictions Test), social cognition (theory of mind false belief vignettes and a behavioural rating measure of empathy) and executive measures of cognitive flexibility (Visual Verbal Test).