Publications by authors named "Katy Clough"

For dark matter to be detectable with gravitational waves from binary black holes, it must reach higher than average densities in their vicinity. In the case of light (wavelike) dark matter, the density of dark matter between the binary can be significantly enhanced by accretion from the surrounding environment. Here we show that the resulting dephasing effect on the last ten orbits of an equal mass binary is maximized when the Compton wavelength of the scalar particle is comparable to the orbital separation, 2π/μ∼d.

View Article and Find Full Text PDF

We show that the most general scalar-tensor theory of gravity up to four derivatives in 3+1 dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practice by studying equal mass black hole binary mergers for different values of the coupling constants. Although our analysis of well-posedness is restricted to cases in which the couplings are small, we find that in simulations we are able to push the couplings to larger values, so that a certain weak coupling condition is order one, without instabilities developing.

View Article and Find Full Text PDF

Massive vector fields feature in several areas of particle physics, e.g., as carriers of weak interactions, dark matter candidates, or an effective description of photons in a plasma.

View Article and Find Full Text PDF