Publications by authors named "Katwijk M"

Ecosystem restoration can contribute to climate change mitigation, as recovering ecosystems sequester atmospheric CO in biomass and soils. It is, however, unclear how much soil organic carbon (SOC) stocks recover across different restored ecosystems. Here, we show SOC recovery in different contexts globally by consolidating 41 meta-analyses into a second-order meta-analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Many tropical coastal ecosystems are affected by human activities related to tourism and land/sea use.
  • We created a method to engage stakeholders early in ecological research to map the Social-Ecological System (SES) in Lac Bay, Bonaire, especially addressing the new challenge of massive sargassum landings.
  • Our Group Model Building methodology helped us uncover key drivers and feedbacks, prioritize urgent research questions, and develop management strategies for the conservation of seagrass beds and mangrove forests in the area.
View Article and Find Full Text PDF
Article Synopsis
  • Sargassum strandings in the tropical Atlantic create toxic sulfide levels that harm mangrove ecosystems.
  • An experiment tested whether adding iron(III) (hydr)oxides could reduce sulfide toxicity and greenhouse gas emissions in mangroves affected by Sargassum.
  • While iron failed to prevent mangrove death from high sulfide levels, it did reduce methane and nitrous oxide emissions significantly, highlighting the complex ecological impacts of Sargassum on mangroves.
View Article and Find Full Text PDF

Plant species usually have either annual or perennial life cycles, but facultative annual species have annual or perennial populations depending on their environment. In terrestrial angiosperms, facultative annual species are rare, with wild rice being one of the few examples. Our review shows that in marine angiosperms (seagrasses) facultative annual species are more common: six (of 63) seagrass species are facultative annual.

View Article and Find Full Text PDF

Seagrass meadows provide valuable ecosystem services of coastal protection and chemical habitat formation that could help mitigate the impact of sea level rise and ocean acidification. However, the intensification of hydrodynamic forces caused by sea level rise, in addition to habitat degradation threaten the provision of these ecosystem services. With quantitative field measurements of the coastal protection and chemical habitat formation services of seagrass meadows, we statistically model the relationships between hydrodynamic forces, vegetation density and the provision of these ecosystem services.

View Article and Find Full Text PDF

It is well known that seagrass meadows sequester atmospheric carbon dioxide, protect coasts, provide nurseries for global fisheries, and enhance biodiversity. Large-scale restoration of lost seagrass meadows is urgently needed to revive these planetary ecosystem services, but sourcing donor material from natural meadows would further decline them. Therefore, we advocate the domestication and mariculture of seagrasses in order to produce the large quantities of seed needed for successful rewilding of the sea with seagrass meadows.

View Article and Find Full Text PDF

Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e.

View Article and Find Full Text PDF

Plant species can be characterized by different growth strategies related to their inherent growth and recovery rates, which shape their responses to stress and disturbance. Ecosystem engineering, however, offers an alternative way to cope with stress: modifying the environment may reduce stress levels. Using an experimental study on two seagrass species with contrasting traits, the slow-growing Zostera marina vs.

View Article and Find Full Text PDF

In the Caribbean, green turtles graze seagrass meadows dominated by through rotational grazing, resulting in the creation of grazed and recovering (abandoned) patches surrounded by ungrazed seagrasses. We evaluated the seagrass community and its environment along a turtle grazing gradient; with the duration of (simulated) grazing as a proxy for the level of grazing pressure. The grazing levels consisted of Short-term (4 months clipping), Medium-term (8 months clipping), Long-term grazing (8 months of clipping in previously grazed areas), 8-months recovery of previously grazed patches, and ungrazed or unclipped patches as controls.

View Article and Find Full Text PDF

Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported, but the changes in extent and density at the continental scale remain unclear. Here we collate assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s.

View Article and Find Full Text PDF

The limiting effects of stressors like desiccation, light and salinity on seagrass growth and distribution are well-studied. However, little is known about their interactive effects, and whether such effects might differ among populations that are adapted to different local conditions. In two laboratory experiments we tested (a) if growth and development of intertidal, temperate is affected by emergence time (experiment 1 and 2), and (b) how this is affected by an additional, second stressor, namely shading (experiment 1) or high salinity (25, 30 and 35, experiment 2).

View Article and Find Full Text PDF

Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g.

View Article and Find Full Text PDF

A manipulative field experiment was designed to investigate the effects of sediment-nutrients and sediment-organic matters on seagrasses, Zostera japonica, using individual and population indicators. The results showed that seagrasses quickly responded to sediment-nutrient and organic matter loading. That is, sediment-nutrients positively impacted on seagrasses by increasing N content of leaves and roots, leaf length and belowground biomass.

View Article and Find Full Text PDF

Seagrass meadows are vital ecosystems in coastal zones worldwide, but are also under global threat. One of the major hurdles restricting the success of seagrass conservation and restoration is our limited understanding of ecological feedback mechanisms. In these ecosystems, multiple, self-reinforcing feedbacks can undermine conservation efforts by masking environmental impacts until the decline is precipitous, or alternatively they can inhibit seagrass recovery in spite of restoration efforts.

View Article and Find Full Text PDF

Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.

View Article and Find Full Text PDF

Pollen limitation may be an important factor in accelerated decline of sparse or fragmented populations. Little is known whether hydrophilous plants (pollen transport by water) suffer from an Allee effect due to pollen limitation or not. Hydrophilous pollination is a typical trait of marine angiosperms or seagrasses.

View Article and Find Full Text PDF

Excess nutrients are potential factors that drive phase shifts from seagrasses to macroalgae. We carried out a manipulative field experiment to study the effects of macroalgae Ulva pertusa loading and nutrient addition to the water column on the nitrogen (N) and carbon (C) contents (i.e.

View Article and Find Full Text PDF

Seagrass beds are globally declining due to human activities in coastal areas. We here aimed to identify threats from eutrophication to the valuable seagrass beds of Curaçao and Bonaire in the Caribbean, which function as nursery habitats for commercial fish species. We documented surface- and porewater nutrient concentrations, and seagrass nutrient concentrations in 6 bays varying in nutrient loads.

View Article and Find Full Text PDF

Seagrass beds are highly productive coastal ecosystems providing a large array of ecosystem services including fisheries and carbon sequestration. As seagrasses are known to be highly sensitive to anthropogenic forcing, we evaluated the use of trace metal concentrations in seagrasses as bioindicators for trace metal pollution of coastal regions at both global and local scale. We carried out a meta-analysis based on literature data to provide a global benchmark list for trace metal accumulation in seagrasses, which was lacking in literature.

View Article and Find Full Text PDF

Despite being a highly valuable key-stone ecosystem, seagrass meadows are threatened and declining worldwide, creating urgent need for indicators of their health status. We compared two indicators for seagrass health: standing leaf area index versus relative recovery from local disturbance. Disturbance was created by removing aboveground biomass and recording the rate of regrowth for Zostera marina meadows exposed to contrasting wave regimes and nutrient stress levels.

View Article and Find Full Text PDF

As a result of anthropogenic disturbances and natural stressors, seagrass beds are often patchy and heterogeneous. The effects of high loads of nutrients and organic matter in patch development and expansion in heterogeneous seagrass beds have, however, poorly been studied. We experimentally assessed the in situ effects of sediment quality on seagrass (Zostera noltii) patch dynamics by studying patch (0.

View Article and Find Full Text PDF

When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs.

View Article and Find Full Text PDF
Article Synopsis
  • Marine Protected Areas (MPAs) help protect endangered species and restore ecosystems, but they can unintentionally harm their habitats when populations of protected species become too high.
  • In a study of a 10-year-old MPA, green turtles significantly damaged seagrass by developing a new foraging technique that disrupts the ecosystem, leading to erosion and reduced seagrass growth.
  • The research suggests that if turtle populations aren't controlled, the seagrass habitat could collapse, highlighting the need for better management strategies to balance species conservation and habitat health.
View Article and Find Full Text PDF

In wetland soils and underwater sediments of marine, brackish and freshwater systems, the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance.

View Article and Find Full Text PDF