Publications by authors named "Katta Mohan Girisha"

Article Synopsis
  • The text discusses a specific gene, bhlhe22, which plays a crucial role in retinal and brain development by encoding a transcription factor involved in neural differentiation.
  • Researchers identified eleven individuals from nine families with variants in this gene linked to a neurodevelopmental disorder characterized by speech limitations, severe motor impairments, intellectual disabilities, and other neurological symptoms, including agenesis of the corpus callosum.
  • Genetic analysis revealed that some individuals had harmful missense variants in a critical region of the gene, while others had a recurring frameshift mutation, suggesting that these genetic changes lead to severe cognitive and motor deficits associated with this newly recognized disorder.
View Article and Find Full Text PDF

Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed.

View Article and Find Full Text PDF
Article Synopsis
  • The TOMM complex is essential for transporting proteins into mitochondria, and TOMM7 is a key subunit that helps stabilize and assemble this complex.
  • Variants in TOMM7 have been linked to various health issues, including short stature, lipodystrophy, and developmental delays in some families.
  • A case study of a 4-month-old girl with severe health problems revealed a novel splice variant in TOMM7, leading to abnormal splicing and shorter transcripts in her parents.
View Article and Find Full Text PDF

Skeletal dysplasias (SKDs) are a heterogeneous group of more than 750 genetic disorders characterized by abnormal development, growth, and maintenance of bones or cartilage in the human skeleton. SKDs are often caused by variants in early patterning genes and in many cases part of multiple malformation syndromes and occur in combination with non-skeletal phenotypes. The aim of this study was to investigate the underlying genetic cause of congenital SKDs in highly consanguineous Pakistani families, as well as in sporadic and familial SKD cases from India using multigene panel sequencing analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in genomic technologies have improved the understanding of epilepsy's genetic factors, aiding in diagnosis, treatment, and genetic counseling for affected families.
  • In a study of 142 Indian families, 44% received a clear epilepsy syndrome diagnosis, with a significant portion linked to severe conditions like developmental epileptic encephalopathy.
  • A definitive molecular diagnosis was achieved in 52% of families, uncovering various genetic disorders and variants, many of which were novel and had notable implications for treatment and recurrence risk.
View Article and Find Full Text PDF

PRKACA-related, atrial defects-polydactyly-multiple congenital malformation syndrome is a recently described skeletal ciliopathy, which is caused by disease-causing variants in PRKACA. The primary phenotypic description includes atrial septal defects, and limb anomalies including polydactyly and short limbs. To date, only four molecularly proven patients have been reported in the literature with a recurrent variant, c.

View Article and Find Full Text PDF

The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants.

View Article and Find Full Text PDF

Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B.

View Article and Find Full Text PDF

Hypomyelinating leukodystrophies comprise a subclass of genetic disorders with deficient myelination of the CNS white matter. Here we report four unrelated families with a hypomyelinating leukodystrophy phenotype harbouring variants in TMEM163 (NM_030923.5).

View Article and Find Full Text PDF

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis.

View Article and Find Full Text PDF

The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly.

View Article and Find Full Text PDF

The sodium (Na):multivitamin transporter (SMVT), encoded by SLC5A6, belongs to the sodium:solute symporter family and is required for the Na-dependent uptake of biotin (vitamin B7), pantothenic acid (vitamin B5), the vitamin-like substance α-lipoic acid, and iodide. Compound heterozygous SLC5A6 variants have been reported in individuals with variable multisystemic disorder, including failure to thrive, developmental delay, seizures, cerebral palsy, brain atrophy, gastrointestinal problems, immunodeficiency, and/or osteopenia. We expand the phenotypic spectrum associated with biallelic SLC5A6 variants affecting function by reporting five individuals from three families with motor neuropathies.

View Article and Find Full Text PDF

Homozygous variants in PPP2R3C have been reported to cause a syndromic 46,XY complete gonadal dysgenesis phenotype with extragonadal manifestations (GDRM, MIM# 618419) in patients from four unrelated families, whereas heterozygous variants have been linked to reduced fertility with teratozoospermia (SPGF36, MIM# 618420) in male carriers. We present eight patients from four unrelated families of Turkish and Indian descent with three different germline homozygous PPP2R3C variants including a novel in-frame duplication (c.639_647dupTTTCTACTC, p.

View Article and Find Full Text PDF

Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis.

View Article and Find Full Text PDF

Multilocus disease-causing genomic variations (MGVs) and multiple genetic diagnoses (MGDs) are increasingly being recognised in individuals and families with Mendelian disorders. This can be mainly attributed to the widespread use of genomic tests for the evaluation of these disorders. We conducted a retrospective study of families evaluated over the last 6 years at our centre to identify families with MGVs and MGDs.

View Article and Find Full Text PDF

The glycine cleavage system H protein (GCSH) is an integral part of the glycine cleavage system with its additional involvement in the synthesis and transport of lipoic acid. We hypothesize that pathogenic variants in GCSH can cause variant nonketotic hyperglycinemia (NKH), a heterogeneous group of disorders with findings resembling a combination of severe NKH (elevated levels of glycine in plasma and CSF, progressive lethargy, seizures, severe hypotonia, no developmental progress, early death) and mitochondriopathies (lactic acidosis, leukoencephalopathy and Leigh-like lesions on MRI). We herein report three individuals from two unrelated Indian families with clinical, biochemical, and radiological findings of variant NKH, harboring a biallelic start loss variant, c.

View Article and Find Full Text PDF

Exome sequencing is gaining popularity as a genomic test for the diagnosis of Mendelian disorders in children. It is essential for pediatricians to familiarize themselves with this technique and its interpretation. This brief review discusses some of the key components of a clinical or research report on exome sequencing for a practicing pediatrician, so as to enable them to utilize this test well and provide timely referrals to a clinical geneticist.

View Article and Find Full Text PDF

Wiedemann-Rautenstrauch syndrome (WRS; MIM# 264090) is a rare neonatal progeroid disorder resulting from biallelic pathogenic variants in the POLR3A. It is an autosomal recessive condition characterized by growth retardation, lipoatrophy, a distinctive face, sparse scalp hair, and dental anomalies. Till date, 19 families are reported with WRS due to variants in POLR3A.

View Article and Find Full Text PDF

RNA exosome is a highly conserved ribonuclease complex essential for RNA processing and degradation. Bi-allelic variants in exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively, while those in EXOSC2 cause short stature, hearing loss, retinitis pigmentosa and distinctive facies. We ascertained an 8-months-old male with developmental delay, microcephaly, subtle dysmorphism and hypotonia.

View Article and Find Full Text PDF

PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly.

View Article and Find Full Text PDF