Key topics related to risk communication and food safety were investigated by three different expert groups. In this study, the Delphi method was used to systematically and iteratively aggregate experts' opinions, and the topics to be communicated to consumers were expressed and prioritized. The opinions of three groups, consisting of 26 members of the expert committee (EC) from the Food Safety Commission of Japan (FSCJ), 29 local government officials (LGOs) from their respective food safety departments, and 25 food safety monitors (FSM) appointed by the FSCJ, were obtained in the period of June through September 2017.
View Article and Find Full Text PDFLaser devices for silicon photonics are expected to be implemented in an integrated environment to complement CMOS devices. For this reason, quantum dot (QD) lasers with excellent thermal properties have been considered as strong candidates for Si photonics light sources. The direct growth of QD lasers on Si (001) on-axis substrates has been garnering attention owing to the possibility of monolithic integration on a CMOS-compatible wafer.
View Article and Find Full Text PDFDirectly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD).
View Article and Find Full Text PDFThresholdless lasing is an outstanding challenge in laser science and is achievable only in devices having near unity quantum efficiency even when not lasing. Such lasers are expected to exhibit featureless linear light output curves. However, such thresholdless behavior hinders identification of the laser transition, triggering a long-lasting argument on how to identify the lasing.
View Article and Find Full Text PDFWe present the first direct observation of two-step photon absorption in an InAs/GaAs single quantum dot (QD) using photocurrent spectroscopy with two lasers. The sharp peaks of the photocurrent are shifted due to the quantum confined Stark effect, indicating that the photocurrent from a single QD is obtained. In addition, the intensity of the peaks depends on the power of the secondary laser.
View Article and Find Full Text PDFSelf-frequency conversion (SFC), where both laser oscillation and nonlinear frequency conversion occurs in the same laser crystal, has been used to efficiently extend the operational wavelength of lasers. Downsizing of the cavity mode volume (V) and increasing the quality factor (Q) could lead to a more efficient conversion process, mediated by enhanced n-th order nonlinearities that generally scale as (Q/V)(n). Here, we demonstrate nanocavity-based SFC by utilizing photonic crystal nanocavity quantum dot lasers.
View Article and Find Full Text PDFAn InAs/GaAs quantum dot laser on a Si rib structure has been demonstrated. The double heterostructure laser structure grown on a GaAs substrate is layer-transferred onto a patterned Si substrate by GaAs/Si direct wafer bonding without oxide or metal mediation. This Fabry-Perot laser operates with current injection through the GaAs/Si rib interface and exhibits InAs quantum dot ground state lasing at 1.
View Article and Find Full Text PDFMonolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxide-free GaAs/Si ohmic heterojunctions have been formed at 300°C; sufficiently low to inhibit active material degradation.
View Article and Find Full Text PDFWe proposed and demonstrate use of optical driving pulses at a telecommunication wavelength for exciton-based quantum gate operation. The exciton in a self-assembled quantum dot is coherently manipulated at 1.3 microm through Rabi oscillation.
View Article and Find Full Text PDFWe demonstrate room temperature continuous-wave laser operation at 1.3 mum in a photonic crystal nanocavity with InAs/GaAs self-assembled quantum dots by optical pumping. By analyzing a coupled rate equation and the experimental light-light characteristic plot, we evaluate the spontaneous emission coupling factor of the laser to be ~ 0.
View Article and Find Full Text PDFIn oriental medicine, not only the local pathological state but also disharmony within the body and the stagnation of Ki are examined. For this purpose, diagnoses in modern western medicine are also used as references. The pathological condition is evaluated by the 4 diagnostic methods as original methods of oriental medicine, treatment points are decided, and acupuncture and moxibustion are performed.
View Article and Find Full Text PDF