Publications by authors named "Katsuyoshi Mihara"

Mitochondria are multifunctional organelles that produce energy and are critical for various signaling pathways. Mitochondrial antiviral signaling (MAVS) is a mitochondrial outer membrane protein essential for the anti-RNA viral immune response, which is regulated by mitochondrial dynamics and energetics; however, the molecular link between mitochondrial metabolism and immunity is unclear. Here we show in cultured mammalian cells that MAVS is activated by mitochondrial fission factor (Mff), which senses mitochondrial energy status.

View Article and Find Full Text PDF

Mitochondrial fission-fusion dynamics and mitochondrial bioenergetics, including oxidative phosphorylation and generation of ATP, are strongly clock controlled. Here we show that these circadian oscillations depend on circadian modification of dynamin-related protein 1 (DRP1), a key mediator of mitochondrial fission. We used a combination of in vitro and in vivo models, including human skin fibroblasts and DRP1-deficient or clock-deficient mice, to show that these dynamics are clock controlled via circadian regulation of DRP1.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles that undergo frequent fusion and fission. Optic atrophy 1 (OPA1) is an essential GTPase protein for both mitochondrial inner membrane (IM) fusion and cristae morphology. Under mitochondria-stress conditions, membrane-anchored L-OPA1 is proteolytically cleaved to form peripheral S-OPA1, leading to the selection of damaged mitochondria for mitophagy.

View Article and Find Full Text PDF

Mitochondrial dynamic by frequent fusion and fission have important roles in various cellular signalling processes and pathophysiology in vivo. However, the molecular mechanisms that regulate mitochondrial fusion, especially in mammalian cells, are not well understood. Accordingly, we developed a novel biochemical cell-free mitochondrial fusion assay system using isolated human mitochondria.

View Article and Find Full Text PDF

Although the mitochondrial inner membrane rhomboid peptidase PARL is known to participate in critical signalling cascades, its role in apoptosis has remained unclear. PARL is now shown to process the mitochondrial pro-apoptotic protein Smac (also known as DIABLO) for its subsequent release into the cytosol where it antagonizes XIAP-mediated caspase inhibition to promote apoptosis.

View Article and Find Full Text PDF

Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons.

View Article and Find Full Text PDF

Mitophagy is thought to play an important role in mitochondrial quality control. Mitochondrial division is believed to occur first, and autophagosome formation subsequently occurs to enwrap mitochondria as a process of mitophagy. However, there has not been any temporal analysis of mitochondrial division and autophagosome formation in mitophagy.

View Article and Find Full Text PDF

Successful recovery from neuronal damage requires a huge energy supply, which is provided by mitochondria. However, the physiological relevance of mitochondrial dynamics in damaged neurons in vivo is poorly understood. To address this issue, we established unique bacterial artificial chromosome transgenic (BAC Tg) mice, which develop and function normally, but in which neuronal injury induces labelling of mitochondria with green fluorescent protein (GFP) and expression of cre recombinase.

View Article and Find Full Text PDF

Mitochondrial morphology is dynamically regulated by fusion and fission. Several GTPase proteins control fusion and fission, and posttranslational modifications of these proteins are important for the regulation. However, it has not been clarified how the fusion and fission is balanced.

View Article and Find Full Text PDF

Mitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contrast to Mff-KO cells, MiD49/MiD51-KO and Drp1-KO cells completely resisted cristae remodeling and cytochrome c release during apoptosis.

View Article and Find Full Text PDF

Aim/hypothesis: Mitochondria and the endoplasmic reticulum (ER) physically interact by close structural juxtaposition, via the mitochondria-associated ER membrane. Inter-organelle communication between the ER and mitochondria has been shown to regulate energy metabolism and to be central to the modulation of various key processes such as ER stress. We aimed to clarify the role of mitochondrial fission in this communication.

View Article and Find Full Text PDF

How mitochondrial dynamism (fission and fusion) affects mitochondrial quality control is unclear. We uncovered distinct effects on mitophagy of inhibiting Drp1-mediated mitochondrial fission versus mitofusin-mediated mitochondrial fusion. Conditional cardiomyocyte-specific Drp1 ablation evoked mitochondrial enlargement, lethal dilated cardiomyopathy, and cardiomyocyte necrosis.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis, including mitochondrial DNA (mtDNA) distribution. Cardiac myocytes have a specialized cytoplasmic structure where large mitochondria are aligned into tightly packed myofibril bundles; however, recent studies have revealed that mitochondrial dynamics also plays an important role in the formation and maintenance of cardiomyocytes. Here, we precisely analyzed the role of mitochondrial fission in vivo.

View Article and Find Full Text PDF

Rationale: Both fusion and fission contribute to mitochondrial quality control. How unopposed fusion affects survival of cardiomyocytes and left ventricular function in the heart is poorly understood.

Objective: We investigated the role of dynamin-related protein 1 (Drp1), a GTPase that mediates mitochondrial fission, in mediating mitochondrial autophagy, ventricular function, and stress resistance in the heart.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that change their morphology by active fusion and fission in response to cellular signaling and differentiation. The in vivo role of mitochondrial fission in mammals has been examined by using tissue-specific knockout (KO) mice of the mitochondria fission-regulating GTPase Drp1, as well as analyzing a human patient harboring a point mutation in Drp1, showing that Drp1 is essential for embryonic and neonatal development and neuronal function. During oocyte maturation and aging, structures of various membrane organelles including mitochondria and the endoplasmic reticulum (ER) are changed dynamically, and their organelle aggregation is related to germ cell formation and epigenetic regulation.

View Article and Find Full Text PDF

Mitochondria contribute to cellular innate immunity against RNA viruses. Mitochondrial-mediated innate immunity is regulated by signalling molecules that are recruited to the mitochondrial membrane, and depends on the mitochondrial inner membrane potential (Δψm). Here we examine the physiological relevance of Δψm and the mitochondrial-associating influenza A viral protein PB1-F2 in innate immunity.

View Article and Find Full Text PDF

Mammalian cells typically contain thousands of copies of mitochondrial DNA assembled into hundreds of nucleoids. Here we analyzed the dynamic features of nucleoids in terms of mitochondrial membrane dynamics involving balanced fusion and fission. In mitochondrial fission GTPase dynamin-related protein (Drp1)-deficient cells, nucleoids were enlarged by their clustering within hyperfused mitochondria.

View Article and Find Full Text PDF

Mitochondrial morphology changes dynamically by coordinated fusion and fission and cytoskeleton-based transport. Cycles of outer and inner membrane fusion and fission are required for the exchange of damaged mitochondrial genome DNA, proteins, and lipids with those of healthy mitochondria to maintain robust mitochondrial structure and function. These dynamics are crucial for cellular life and death, because they are essential for cellular development and homeostasis, as well as apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • Fis1, a protein in yeast, is known for recruiting Dnm1, which regulates mitochondrial fission, but its role in mammals is less clear as it seems unnecessary for Drp1 recruitment.
  • Researchers found that TBC1D15 binds to Fis1 in HeLa cells and forms a stable complex, while Drp1 does not interact with Fis1.
  • The study shows that knockdown of TBC1D15 leads to abnormal mitochondrial shapes, similar to Fis1 knockdown, indicating that both proteins work together to regulate mitochondrial morphology in mammals independently of Drp1.
View Article and Find Full Text PDF

Dysfunction of PINK1, a mitochondrial Ser/Thr kinase, causes familial Parkinson's disease (PD). Recent studies have revealed that PINK1 is rapidly degraded in healthy mitochondria but accumulates on the membrane potential (ΔΨm)-deficient mitochondria, where it recruits another familial PD gene product, Parkin, to ubiquitylate the damaged mitochondria. Despite extensive study, the mechanism underlying the homeostatic control of PINK1 remains unknown.

View Article and Find Full Text PDF

Significance: Mitochondria are double membrane-bound organelles with tubular network structures that are essential for oxidative ATP production and play pivotal roles in regulating calcium homeostasis and apoptosis. Furthermore, mitochondria produce large amounts of reactive oxygen species that are fatal to cellular functions through uncoupled respiration. These organelles dynamically change their morphology by frequent fusion and fission, and three types of high molecular weight GTPase proteins have been identified as core components of the fusion and fission machineries.

View Article and Find Full Text PDF

Mitochondria participate in a variety of physiologic processes, such as ATP production, lipid metabolism, iron-sulfur cluster biogenesis, and calcium buffering. The morphology of mitochondria changes dynamically due to their frequent fusion and division in response to cellular conditions, and these dynamics are an important constituent of apoptosis. The discovery of large GTPase family proteins that regulate mitochondrial dynamics, together with novel insights into the role of mitochondrial fusion and fission in apoptosis, has provided important clues to understanding the molecular mechanisms of cellular apoptosis.

View Article and Find Full Text PDF

Mitochondria frequently change their morphology by fusion and fission, and these dynamic morphologic changes are essential for maintaining both mitochondrial and cellular functions. The cytoplasmic dynamin-related guanosine triphosphatase (GTPase) Drp1 (Dnm1 in yeast) is recruited to mitochondrial fission sites and severs mitochondria. Although the mitochondrial outer membrane (MOM) protein Fis1 functions as a membrane receptor for Dnm1 in yeast, it is not yet known whether the human homolog of yeast Fis1 (hFis1) is a membrane receptor for Drp1 in mammals.

View Article and Find Full Text PDF

Mitochondria utilize diverse cytoskeleton-based mechanisms to control their functions and morphology. Here, we report a role for kinesin-like protein KLP6, a newly identified member of the kinesin family, in mitochondrial morphology and dynamics. An RNA interference screen using Caenorhabditis elegans led us to identify a C.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles that continuously change their shape through frequent fusion, fission and movement throughout the cell, and these dynamics are crucial for the life and death of the cells as they have been linked to apoptosis, maintenance of cellular homeostasis, and ultimately to neurologic disorders and metabolic diseases. Over the past decade, a growing number of novel proteins that regulate mitochondrial dynamics have been discovered. Large GTPase family proteins and their regulators control these aspects of mitochondrial dynamics.

View Article and Find Full Text PDF