Publications by authors named "Katsutoshi Mizuno"

Immotile cilia at the ventral node of mouse embryos are required for sensing leftward fluid flow that breaks left-right symmetry of the body. However, the flow-sensing mechanism has long remained elusive. In this work, we show that immotile cilia at the node undergo asymmetric deformation along the dorsoventral axis in response to the flow.

View Article and Find Full Text PDF

For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning.

View Article and Find Full Text PDF

Light-responsive regulation of ciliary motility is known to be conducted through modulation of dyneins, but the mechanism is not fully understood. Here, we report a novel subunit of the two-headed f/I1 inner arm dynein, named DYBLUP, in animal spermatozoa and a unicellular green alga. This subunit contains a BLUF (sensors of blue light using FAD) domain that appears to directly modulate dynein activity in response to light.

View Article and Find Full Text PDF

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia.

View Article and Find Full Text PDF
Article Synopsis
  • Immotile cilia in mouse embryos help sense fluid flow and play a role in breaking left-right (L-R) symmetry through calcium (Ca) signaling.
  • Intraciliary and cytoplasmic Ca transients were identified in crown cells, showing that these signals are asymmetrically biased and rely on fluid flow and the PKD2 channel.
  • The study categorized the Ca transients into two types, revealing that type 1 (L-R asymmetric) signals are crucial for initiating L-R symmetry breaking, particularly in the left posterior region of the node.
View Article and Find Full Text PDF

Unidirectional fluid flow generated by motile cilia at the left-right organizer (LRO) breaks left-right (L-R) symmetry during early embryogenesis in mouse, frog and zebrafish. The chick embryo, however, does not require motile cilia for L-R symmetry breaking. The diversity of mechanisms for L-R symmetry breaking among vertebrates and the trigger for such symmetry breaking in non-mammalian amniotes have remained unknown.

View Article and Find Full Text PDF

Cluap1/IFT38 is a ciliary protein that belongs to the IFT-B complex and is required for ciliogenesis. In this study, we have examined the behaviors of Cluap1 protein in nonciliated and ciliated cells. In proliferating cells, Cluap1 is located at the distal appendage of the mother centriole.

View Article and Find Full Text PDF

Sperm chemotaxis toward a chemoattractant is very important for the success of fertilization. Calaxin, a member of the neuronal calcium sensor protein family, directly acts on outer-arm dynein and regulates specific flagellar movement during sperm chemotaxis of ascidian, Ciona intestinalis. Here, we present the crystal structures of calaxin both in the open and closed states upon Ca and Mg binding.

View Article and Find Full Text PDF

Through their coordinated alignment and beating, motile cilia generate directional fluid flow and organismal movement. While the mechanisms used by multiciliated epithelial tissues to achieve this coordination have been widely studied, much less is known about regulation of monociliated tissues such as those found in the vertebrate node and swimming planktonic larvae. Here, we show that a calcium sensor protein associated with outer arm dynein, calaxin, is a critical regulator for the coordinated movements of monocilia.

View Article and Find Full Text PDF

Changes in protein by posttranslational modifications comprise an important mechanism for the control of many cellular processes. Several flagellar proteins are methylated on arginine residues during flagellar resorption; however, the function is not understood. To learn more about the role of protein methylation during flagellar dynamics, we focused on protein arginine methyltransferases (PRMTs) 1, 3, 5, and 10.

View Article and Find Full Text PDF

The complex waveforms characteristic of motile eukaryotic cilia and flagella are produced by the temporally and spatially regulated action of multiple dynein subforms generating sliding between subsets of axonemal microtubules. Multiple protein complexes have been identified that are associated with the doublet microtubules and that mediate regulatory signals between key axonemal structures, such as the radial spokes and central apparatus, and the dynein arm motors; these complexes include the N-DRC, MIA, and CSC complexes. Previous studies have shown that PACRG (parkin co-regulated gene) forms a complex that is anchored to the axonemal doublet microtubules.

View Article and Find Full Text PDF

Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution.

View Article and Find Full Text PDF

Sperm chemotaxis occurs widely in animals and plants and plays an important role in the success of fertilization. Several studies have recently demonstrated that Ca(2+) influx through specific Ca(2+) channels is a prerequisite for sperm chemotactic movement. However, the regulator that modulates flagellar movement in response to Ca(2+) is unknown.

View Article and Find Full Text PDF

Metazoan spermatozoa, especially those from marine invertebrates and fish, are excellent sources for isolating axonemal dyneins because of their cellular homogeneity and the large amounts that can be collected. Sperm flagella can be easily isolated by homogenization and subsequent centrifugation. Axonemes are obtained by demembranation of flagella with the nonionic detergent Triton X-100.

View Article and Find Full Text PDF

Background Information: Spermatozoa show several changes in flagellar waveform, such as upon fertilization. Ca(2+) has been shown to play critical roles in modulating the waveforms of sperm flagella. However, a Ca(2+)-binding protein in sperm flagella that regulates axonemal dyneins has not been fully characterized.

View Article and Find Full Text PDF

Germline transgenesis with a Tc1/mariner superfamily Minos transposon was achieved in the ascidian Ciona intestinalis. Transgenic lines that express transposases in germ cells are very useful for remobilizing transposon copies. In the present study, we created transposase-expressing lines of Minos in Ciona.

View Article and Find Full Text PDF