Background: Small molecules classified as haptens are generally measured by competitive immunoassay, which is theoretically inferior to noncompetitive sandwich immunoassay in terms of sensitivity and specificity. We created a method for developing sandwich immunoassays to measure haptens on the basis of antimetatype antibodies.
Methods: We generated antimetatype monoclonal antibodies against a hapten-antibody immunocomplex using an ex vivo antibody development system, the Autonomously Diversifying Library (ADLib) system.
Chemotherapy with platinum agents is the standard of care for non-small-cell lung cancer (NSCLC); however, novel molecular-targeted agents like gefitinib have been approved for advanced NSCLCs, including recurrent cases previously treated with platinum-based chemotherapy. Although these agents show antitumor activity through distinct mechanisms and elicit positive initial responses, tumors invariably develop resistance. Recent studies have revealed mechanisms by which both types of agents induce acquired resistance.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is a major angiogenic factor that activates pro-angiogenic molecules to generate new vessels. Recently, we identified a VEGF-A-induced pro-angiogenic gene, BCL-6 associated zinc finger protein (BAZF), in endothelial cells. BAZF interacts with CBF1, a transcriptional regulator of Notch signaling, and downregulates Notch signaling by inducing the degradation of CBF1.
View Article and Find Full Text PDFBackground: "Oncogene addiction" is a concept in which tumor cells exhibit dependence on certain oncogene(s) for their sustained proliferation and survival, thus providing the rationale for molecular targeted therapies. Cancer cells addicted to epidermal growth factor receptor (EGFR) bear activated mutations in the EGFR gene, and these mutations are used as the markers for predicting carcinomas susceptible to EGFR inhibitors such as gefitinib and erlotinib. However, other unknown mechanisms underlying susceptibility to EGFR inhibitors have also been suggested.
View Article and Find Full Text PDFThe precise regulation of epidermal growth factor receptor (EGFR) is crucial for its function in cellular growth control. Although many antibodies against EGFR have been developed and used to analyze its regulation and function, it is not yet easy to analyze activated EGFR specifically. Activated EGFR has been mainly detected by its phosphorylation state using anti-phospho-EGFR and anti-phosphotyrosine antibodies.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells into vascular structures.
View Article and Find Full Text PDFVascular endothelial growth factor A (VEGFA) and the type III receptor tyrosine kinase receptors (RTKs) are both required for the differentiation of endothelial cells (vasculogenesis) and for the sprouting of new capillaries (angiogenesis). We have isolated a duplicated zebrafish VegfA locus, termed VegfAb, and a duplicate RTK locus with homology to KDR/FLK1 (named Kdrb). Morpholino-disrupted VegfAb embryos develop a normal circulatory system until approximately 2 to 3 days after fertilization (dpf), when defects in angiogenesis permit blood to extravasate into many tissues.
View Article and Find Full Text PDFCataracts, the loss of lens transparency, are the leading cause of human blindness. The zebrafish embryo, with its transparency and relatively large eyes, is an excellent model for studying ocular disease in vivo. We found that the zebrafish cloche mutant, both the cloche(m39) and cloche(S5) alleles, which have defects in hematopoiesis and blood vessel development, also have lens cataracts.
View Article and Find Full Text PDFVascular endothelial growth factor-receptors (VEGF-Rs) are pivotal regulators of vascular development, but a specific role for these receptors in the formation of heart valves has not been identified. We took advantage of small molecule inhibitors of VEGF-R signaling and showed that blocking VEGF-R signaling with receptor selective tyrosine kinase inhibitors, PTK 787 and AAC 787, from 17-21 hr post-fertilization (hpf) in zebrafish embryos resulted in a functional and structural defect in cardiac valve development. Regurgitation of blood between the two chambers of the heart, as well as a loss of cell-restricted expression of the valve differentiation markers notch 1b and bone morphogenetic protein-4 (bmp-4), was readily apparent in treated embryos.
View Article and Find Full Text PDFNeuropilin-1, a receptor for axon-repellent semaphorins and vascular endothelial growth factor (VEGF), functions both in angiogenesis and axon growth. Here, we show strong expression of neuropilin-1a in primary motor neurons in the trunk of embryonic zebrafish. Reducing the expression of neuropilin-1a using antisense morpholino oligonucleotides induced aberrant branching of motor nerves, additional exit points of motor nerves from the spinal cord, and migration of neurons out of the spinal cord along the motor axon pathway in a dose-dependent manner.
View Article and Find Full Text PDFThere is intense interest in how blood vessel development is regulated. A number of vascular growth factors and their receptors have been described. The vascular endothelial growth factor (VEGF) and its receptors are major contributors to normal mammalian vascular development.
View Article and Find Full Text PDFPreviously, we described the isolation and characterization of the first zebrafish neuropilin gene, which we now call nrp1a, and found its protein to be a mediator of vascular endothelial growth factor (VEGF)-dependent angiogenesis [Proc. Natl Acad. Sci.
View Article and Find Full Text PDFWe investigated the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and its receptors in the rat ovary to define the role of HB-EGF in the ovarian function. The expression pattern of HB-EGF mRNA and protein were studied by semi-quantitative RT-PCR and immuno-histochemistry using an antibody that was specifically stained for the precursor form of HB-EGF in naturally cycling rats and immature pseudo-pregnant rat models. The immuno-histochemical study showed that in naturally cycling rats, HB-EGF was expressed in most granulosa cells of early follicles and all the developing follicles but not in preovulatory follicles.
View Article and Find Full Text PDFThe physiological role of any of the epidermal growth factor (EGF) receptor tyrosine kinases has yet to be determined in zebrafish. We isolated a zebrafish homologue of EGFR (egfr) that shows a 63% amino acid overall identity to human EGFR but with 90% amino acid identity in the kinase domain. Whole mount in situ hybridization showed ubiquitous distribution of egfr transcripts during gastrulation, somitogenesis and later stages.
View Article and Find Full Text PDFThis study aims to investigate the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and its role in regulating apoptosis of human luteinized granulosa cells (LGC). By using RT-PCR and immunocytochemistry, the expression of HB-EGF and the EGF receptor family was demonstrated. HER4, one of the two cognate receptors for HB-EGF, was found translocated into the nucleus.
View Article and Find Full Text PDFNeuropilin-1 (NRP1) is a cell-surface receptor for both vascular endothelial growth factor(165) (VEGF(165)) and class 3 semaphorins that is expressed by neurons and endothelial cells. NRP1 is required for normal developmental angiogenesis in mice. The zebrafish is an excellent system for analyzing vascular development.
View Article and Find Full Text PDF