Publications by authors named "Katsutoshi Fukuda"

Increasing the performance of Pt-based electrocatalysts for the oxygen reduction reaction (ORR) is essential for the widespread commercialization of polymer electrolyte fuel cells. Here we show the synthesis of double-layer Pt nanosheets with a thickness of 0.5 nm via the topotactic reduction of 0.

View Article and Find Full Text PDF

We investigated the electronic structures of mono- and few-layered Ru nanosheets (N layers (L) with N = 1, ~6, and ~9) on Si substrate by ultra-violet and x-ray photoemission spectroscopies. The spectral density of states (DOS) near E of ~6 L and 1 L is suppressed as it approaches E in contrast to that of ~9 L, which is consistent with the Ru 3 d core-level shift indicating the reduction of the metallic conductivity. A power law g(ε) ∝ |ε - ε| well reproduces the observed spectral DOS of ~6 L and 1 L.

View Article and Find Full Text PDF

The charge-discharge capacity of lithium secondary batteries is dependent on how many lithium ions can be reversibly extracted from (charge) and inserted into (discharge) the electrode active materials. In contrast, large structural changes during charging/discharging are unavoidable for electrode materials with large capacities, and thus there is great demand for developing materials with reversible structures. Herein, we demonstrate a reversible rocksalt to amorphous phase transition involving anion redox in a LiTiS electrode active material with NaCl-type structure.

View Article and Find Full Text PDF

A unique charge/discharge mechanism of amorphous TiS is reported. Amorphous transition metal polysulfide electrodes exhibit anomalous charge/discharge performance and should have a unique charge/discharge mechanism: neither the typical intercalation/deintercalation mechanism nor the conversion-type one, but a mixture of the two. Analyzing the mechanism of such electrodes has been a challenge because fewer tools are available to examine the "amorphous" structure.

View Article and Find Full Text PDF

Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase.

View Article and Find Full Text PDF

We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface.

View Article and Find Full Text PDF

Roles of antisite transition metals interchanging with Li atoms in electrode materials of Li transition-metal complex oxides were clarified using a newly developed direct labeling method, termed powder diffraction anomalous fine structure (P-DAFS) near the Ni K-edge. We site-selectively investigated the valence states and local structures of Ni in Li0.89Ni1.

View Article and Find Full Text PDF

Ti₁-x-yFexCoyO₂ nanosheets are synthesized in which the (Fe/Co) content is systematically controlled in the range of 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.2.

View Article and Find Full Text PDF

A systematic study has been conducted to examine the thermal stability of layer-by-layer assembled films of perovskite-type nanosheets, (Ca2Nb3O10(-))n (n = 1-10), which exhibit superior dielectric and insulating properties. In-plane and out-of-plane X-ray diffraction data as well as observations by atomic force microscopy and transmission electron microscopy indicated the high thermal robustness of the nanosheet films. In a monolayer film with an extremely small thickness of ∼2 nm, the nanosheet was stable up to 800 °C, the temperature above which segregation into CaNb2O6 and Ca2Nb2O7 began.

View Article and Find Full Text PDF

The phase transition between LiFePO4 and FePO4 during nonequilibrium battery operation was tracked in real time using time-resolved X-ray diffraction. In conjunction with increasing current density, a metastable crystal phase appears in addition to the thermodynamically stable LiFePO4 and FePO4 phases. The metastable phase gradually diminishes under open-circuit conditions following electrochemical cycling.

View Article and Find Full Text PDF

The metallization behavior of molecularly thin RuO2 nanosheets obtained from complete delamination of layered ruthenates was studied. Interestingly, the RuO2 nanosheets in a monolayer state topotactically transformed into a single layer of Ru atoms, i.e.

View Article and Find Full Text PDF

Interlayer Rb(+) of the perovskite-type layered oxyfluoride RbSrNb(2)O(6)F was ion-exchanged with H(+), and the protonated phase was reacted with aqueous solution of tetrabutylammonium hydroxide to exfoliate it into nanosheets. The resulting nanosheet suspension exhibits Tyndall scattering of a laser beam, indicating its colloidal nature. Elemental composition of the nanosheet was estimated as Sr(0.

View Article and Find Full Text PDF

Layered rubidium tungstate, Rb(4)W(11)O(35), with a two-dimensional (2D) bronze-type tunnel structure was successfully delaminated into colloidal nanosheets via a soft-chemical process involving acid exchange and subsequent intercalation of tetrabutylammonium ions. Characterizations by transmission electron microscopy and atomic force microscopy confirmed the formation of unilamellar 2D nanosheet crystallites with a unique thickness of ∼3 nm and an average lateral size of 400 nm. The obtained nanosheets exhibited reversible color change upon UV-light excitation via an optical band gap of 3.

View Article and Find Full Text PDF

La-Eu solid solution nanosheets La Eu TaO have been synthesized, and their photoluminescence properties have been investigated. La Eu TaO nanosheets were prepared from layered perovskite compounds LiLa Eu TaO as the precursors by soft chemical exfoliation reactions. Both the precursors and the exfoliated nanosheets exhibit a decrease in intralayer lattice parameters as the Eu contents increase.

View Article and Find Full Text PDF

Ultrathin films composed of ruthenate nanosheets (RuO(2)ns) were fabricated via electrostatic self-assembly of unilamellar RuO(2)ns crystallites derived by total exfoliation of an ion-exchangeable layered ruthenate. Ultrathin films with submonolayer to monolayer RuO(2)ns coverage and multilayered RuO(2)ns thin films were prepared by controlled electrostatic self-assembly and layer-by-layer deposition using a cationic copolymer as the counterion. Electrical properties of a single RuO(2)ns crystallite were successfully measured by means of scanning probe microscopy.

View Article and Find Full Text PDF

Unilamellar crystallites of conductive ruthenium oxide having a thickness of about 1 nm were obtained via elemental exfoliation of a protonic layered ruthenate, H(0.2)RuO(2).0.

View Article and Find Full Text PDF

Exfoliated unilamellar titania nanosheets of Ti(0.87)O(2) with a lateral size of 10-30 microm were deposited layer-by-layer onto various substrates by Langmuir-Blodgett procedure to produce a highly ordered lamellar nanofilms. The nanosheets dispersed in an aqueous suspension containing quaternary ammonium ions as a supporting electrolyte floated spontaneously at the air/liquid interface, and they were successfully transferred onto the substrate after surface compression.

View Article and Find Full Text PDF

Layered cesium tungstate, Cs(6+x)W(11)O(36), with two-dimensional (2D) pyrochlore structure was exfoliated into colloidal unilamellar sheets through a soft-chemical process. Interlayer Cs ions were replaced with protons by acid exchange, and quaternary ammonium ions were subsequently intercalated under optimized conditions. X-ray diffraction (XRD) measurements on gluelike sediment recovered from the colloidal suspension by centrifugation showed a broad pattern of a pronounced wavy profile, which closely matched the square of calculated structure factor for the single host layer.

View Article and Find Full Text PDF

Nanosheets can be used as building blocks to fabricate versatile nanostructured materials. In this paper, morphology of the Cs(4)W(11)O(36) and Nb(3)O(8) and TaO(3) sheets with different layers are analyzed by different field-emission scanning electron microscopes (FE-SEMs). Chemical composition of the single-layered Cs(4)W(11)O(36) with thickness of about 2 nm, and multilayered Nb(3)O(8) nanosheets with thickness of less than 14 nm are analyzed by both the Si(Li) solid-state detector and transition edge sensor (TES) microcalorimeter, successfully.

View Article and Find Full Text PDF

Exfoliated oxide nanosheets such as Ti0.91O2 and Ca2Nb3O10 and layered double hydroxide (LDH) nanosheets of Mg2/3Al1/3(OH)2 were restacked into inorganic sandwich layered materials. Sequential adsorption of these oppositely charged nanosheets from their colloidal suspensions yielded multilayer ultrathin films while their simple mixing produced lamellar flocculates.

View Article and Find Full Text PDF

Layered tantalum oxide, RbTaO3, was delaminated into colloidal TaO3 unilamellar crystallites, which are characterized by an open-channel structure as well as a very small thickness of approximately 1.0 nm.

View Article and Find Full Text PDF

We examined the photochemical properties of well-ordered multilayer films of titania nanosheets prepared on quartz-glass substrate using the layer-by-layer deposition method. The photocatalytic decomposition of gaseous 2-propanol and bleaching of Methylene Blue dye under UV light illumination were measured to evaluate the photocatalytic oxidation ability. Photoinduced hydrophilicity was also studied by measuring the contact angle of water droplets on the film.

View Article and Find Full Text PDF

Crystallization behaviors of anatase nanocrystallites from an ultrathin two-dimensional reactant composed of exfoliated titania nanosheets have been studied by monitoring the heating process of their well-organized films, with which the film thickness can be controlled from a molecularly thin monolayer to a stacked multilayer structure with a stepwise increment of approximately 1 nm. The heated products were identified by means of total reflection fluorescence X-ray absorption near-edge structure analysis and in-plane X-ray diffraction measurements using a synchrotron radiation source. The films composed of five or more layers of stacked nanosheets were transformed into anatase at 400-500 degrees C, which is a normal crystallization temperature of anatase from bulk reactants.

View Article and Find Full Text PDF