Publications by authors named "Katsuro Tachibana"

Drug therapy for secondary lymphedema has not yet been established. Conventional oral and intravenous administration is difficult to administer in sufficient doses due to adverse events. Therefore, it is necessary to develop a transdermal delivery system that can deliver high concentrations of drugs to the edema area.

View Article and Find Full Text PDF

Background: Soft tissue plays an important role in stabilizing the hinge point for osteotomy around the knee. However, insufficient data are available on the anatomic features of the soft tissue around the hinge position for lateral closing-wedge distal femoral osteotomy (LCWDFO).

Purpose: To (1) anatomically analyze the soft tissue around the hinge position for LCWDFO, (2) histologically analyze the soft tissue based on the anatomic analysis results, and (3) radiologically define the appropriate hinge point to prevent unstable hinge fracture based on the results of the anatomic and histological analyses.

View Article and Find Full Text PDF

Research in the field of high-intensity focused ultrasound (HIFU) for intracranial gene therapy has greatly progressed over the years. However, limitations of conventional HIFU still remain. That is, genes are required to cross the blood-brain barrier (BBB) in order to reach the neurological disordered lesion.

View Article and Find Full Text PDF

In this study, we developed an efficient mRNA delivery vehicle by optimizing a lyophilization method for preserving human serum albumin-based nanobubbles (HSA-NBs), bypassing the need for artificial stabilizers. The morphology of the lyophilized material was verified using scanning electron microscopy, and the concentration, size, and mass of regenerated HSA-NBs were verified using flow cytometry, nanoparticle tracking analysis, and resonance mass measurements, and compared to those before lyophilization. The study also evaluated the response of HSA-NBs to 1 MHz ultrasound irradiation and their ultrasound (US) contrast effect.

View Article and Find Full Text PDF

Background: Soft tissue has an important role in stabilizing the hinge point of medial closed wedge distal femoral osteotomy (MCWDFO). However, there are conflicting data on the soft tissue anatomy around the hinge point of MCWDFO and, therefore, further anatomical data are needed. The purposes of the study were to: 1) anatomically analyze the soft tissue around the hinge point of MCWDFO; 2) radiologically define the appropriate hinge point to prevent an unstable hinge fracture based on the result of the anatomical analysis; and 3) histologically analyze the soft tissue based on the result of the anatomical analysis.

View Article and Find Full Text PDF

The use of nanobubbles (NBs) for ultrasound-mediated gene therapy has recently attracted much attention. However, few studies have evaluated the effect of different NB size distribution to the efficiency of gene delivery into cells. In this study, various size of albumin stabilized sub-micron bubbles were examined in an ultrasound (1 MHz) irradiation setup in the aim to compare and optimize gene transfer efficiency.

View Article and Find Full Text PDF

The biological effects of ultrasound may be classified into thermal and nonthermal mechanisms. The nonthermal effects may be further classified into cavitational and noncavitational mechanisms. DNA damage induced by ultrasound is considered to be related to nonthermal cavitations.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate how low-intensity ultrasound affects cancer cell growth both in the lab (in vitro) and in living organisms (in vivo).
  • Melanoma C32 cells were particularly sensitive to ultrasound, showing a 43.2% growth inhibition in vitro and a significant slowdown of tumor growth in mice by 2.7 times compared to untreated tumors after two weeks.
  • The results suggest that low-intensity ultrasound could be a promising noninvasive treatment option for slowing down tumor growth, but more research is needed to understand the specific genes involved in this process.
View Article and Find Full Text PDF

High-intensity focused ultrasound (HIFU) is a non-invasive method of ablating malignant tumors. This paper will review the current clinical application of HIFU specially in the treatment of breast cancer. In addition to clinical studies, this review will also look into some basic studies that could address the technical issues related to this modality.

View Article and Find Full Text PDF

Background: The gross pathology of the acromial undersurface in shoulders with rotator cuff tears with subacromial impingement is not completely understood. Many researchers have focused on damage to the anterior one-third area of the acromial undersurface, but few have studied the middle and posterior one-third areas. The purpose of this study was to clarify where and what damage occurs at the acromial undersurface in patients with rotator cuff tears.

View Article and Find Full Text PDF

Recent research has revealed that nanobubbles (NBs) can be an effective tool for gene transfection in conjunction with therapeutic ultrasound (US). However, an approach to apply commercially available hand-held diagnostic US scanners for this purpose has not been evaluated as of now. In the present study, we first compared , the efficiency of gene transfer (pCMV-Luciferase) with lipid-based and albumin-based NBs irradiated by therapeutic US (1MHz, 5.

View Article and Find Full Text PDF

The administration of recombinant human soluble thrombomodulin (rhsTM) significantly improves liver inflammation and increases the survival rate of patients with acute liver failure (ALF). However, rhsTM is dose-dependently correlated to the risk of bleeding. Recently, ultrasound (US) was found to enhance the effect of various drugs.

View Article and Find Full Text PDF

There has been increasing interest in using nanobubbles (NBs) for ultrasound mediated drug delivery as well as for ultrasound imaging. Albumin NBs are especially attractive for its potential of becoming a versatile platform for drug carriers and molecular targeted therapy agents. However, physical characterization of NBs is generally considered to be difficult due to various technical issues, such as concentration limitations, nanoparticle contamination, etc.

View Article and Find Full Text PDF

Background: The purpose of this study was to investigate the relationship between the bone length available for coracoid transfer without coracoclavicular ligament injury and the distance from the coracoid tip to the attachments of the coracoacromial ligament or pectoralis minor. We hypothesized that cadaver height and the soft tissue attachments on the coracoid process were predictive factors for sufficient bone length for coracoid transfer.

Methods: This study included 28 shoulders from Japanese cadavers: 19 male and 9 female.

View Article and Find Full Text PDF

Background: Reconstructing both coracoclavicular ligaments following acromioclavicular dislocation has recently been reported to restore the function of the acromioclavicular joint better than traditional procedures. Knowing the appropriate position and orientation of the bone tunnels and the potential risks of neurovascular injuries leads to safe reconstruction. We aimed to answer the following questions: what is the difference in the accurate clavicular bone tunnel positions (BTPs) during coracoclavicular ligament reconstruction between sex, and what are the potential risks for neurovascular injuries?

Hypothesis: The BTPs differ by sex at the site of coracoclavicular ligament reconstruction.

View Article and Find Full Text PDF

Nanobubbles (NBs) are of high interest for ultrasound (US) imaging as contrast agents and therapy as cavitation nuclei. Because of their instability (Laplace pressure bubble catastrophe) and low sensitivity to US, reducing the size of commonly used microbubbles to submicron-size is not trivial. We introduce stabilized NBs in the 100-250-nm size range, manufactured by agitating human serum albumin and perfluoro-propane.

View Article and Find Full Text PDF

Background: Normal human oral keratinocytes are highly sensitive to anticancer drugs including doxorubicin. Resveratrol, epigallocatechin gallate, and tannic acid are polyphenolic compounds that were reported to have cardioprotective effect when combined with doxorubicin. However, it is unknown whether these polyphenols could protect normal human oral keratinocytes against doxorubicin-induced cytotoxicity without weakening its cytotoxic potential against oral cancer cells.

View Article and Find Full Text PDF

Sonoporation is a promising method to intracellularly deliver synthetic gene carriers that have lower endocytotic uptake than viral carriers. Here, we applied sonoporation to deliver genes via polyethylene glycol (PEG)-grafted polymeric carriers that specifically respond to hyperactivated protein kinase A (PKA). PEG-grafted polymeric carrier/DNA polyplexes were not efficiently delivered into cells via the endocytotic pathway because of the hydrophilic PEG layer surrounding the polyplexes.

View Article and Find Full Text PDF

Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.

View Article and Find Full Text PDF

Purpose: To scrutinize the apoptotic and genotoxic effects of low-intensity ultrasound and an ultrasound contrast agent (SonoVue; Bracco Diagnostics Inc., EU) on human peripheral mononuclear blood cells (PMBCs).

Methods: PMBCs were subjected to a low-intensity ultrasound field (1-MHz frequency; spatial peak temporal average intensity 0.

View Article and Find Full Text PDF

At present, the current therapeutic strategy for apoptosis induction mainly relies on the administration of pharmacological apoptotic modulators. Apart from that, apoptosis can be induced by various external stimuli such as hyperthermia, ionizing radiation, and electric fields. Despite advantages, both physical and pharmacological approaches bear some limitations as well.

View Article and Find Full Text PDF

BACKGROUND We scrutinized the feasibility of apoptosis induction in blood cancer cells by means of low-intensity ultrasound and the proteasome inhibitor bortezomib (Velcade). MATERIAL AND METHODS Human leukemic monocyte lymphoma U937 cells were subjected to ultrasound in the presence of bortezomib and the echo contrast agent Sonazoid. Two types of acoustic intensity (0.

View Article and Find Full Text PDF

Purpose: This study will analyze the mechanical effects (immediate lysis) and biological effects (cell survival, apoptosis, cell cycle) on U937 cells subjected to different sonication conditions with increasing and decreasing frequencies and burst rate (number of burst of a repeating signal in a specific time unit), in order to determine the best conditions of sonication to produce high mortality, apoptosis and inhibition of hyperproliferation.

Method: Cells are been stressed by pulse wave ultrasounds with increasing and decreasing frequencies between 400 and 620 kHz, at burst rates of 0.5, 10, 50 Hz and 50 % duty cycle (percentage of one period in which a signal is active), ultrasound intensities (spatial average-temporal peak) 0.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.

View Article and Find Full Text PDF

The conjunction of low intensity ultrasound and encapsulated microbubbles can alter the permeability of cell membrane, offering a promising theranostic technique for non-invasive gene/drug delivery. Despite its great potential, the biophysical mechanisms of the delivery at the cellular level remains poorly understood. Here, the first direct high-speed micro-photographic images of human lymphoma cell and microbubble interaction dynamics are provided in a completely free suspension environment without any boundary parameter defect.

View Article and Find Full Text PDF