Cold atmospheric plasma (CAP) has been studied and clinically applied to treat chronic wounds, cancer, periodontitis, and other diseases. CAP exerts cytotoxic, bactericidal, cell-proliferative, and anti-inflammatory effects on living tissues by generating reactive species. Therefore, CAP holds promise as a treatment for diseases involving chronic inflammation and bacterial infections.
View Article and Find Full Text PDFIncreased tolerance to light stress in cyanobacteria is a desirable feature for their applications. Here, we obtained a high light tolerant (Tol) strain of Synechocystis sp. PCC6803 through an adaptive laboratory evolution, in which the cells were repeatedly sub-cultured for 52 days under high light stress conditions (7000 to 9000 μmol m s).
View Article and Find Full Text PDFPhotoinhibition, or cell damage caused by excessively intense light is a major issue for the industrial use of cyanobacteria. To investigate the mechanism of responses to extreme high light intensity, gene expression analysis was performed using the model cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803) cultured under various light intensities.
View Article and Find Full Text PDFThe role of the oxidative pentose phosphate pathway (oxPPP) in Synechocystis sp. PCC 6803 under mixotrophic conditions was investigated by C metabolic flux analysis. Cells were cultured under low (10 μmol m s) and high light intensities (100 μmol m s) in the presence of glucose.
View Article and Find Full Text PDFCorynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin.
View Article and Find Full Text PDFBackground: sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance.
View Article and Find Full Text PDFMetabolic engineering of isopropyl alcohol (IPA)-producing Escherichia coli strains was conducted along with C-metabolic flux analysis (MFA). A metabolically engineered E. coli strain expressing the adc gene derived from Clostridium acetobutylicum and the IPADH gene from C.
View Article and Find Full Text PDFSynechocystis sp. PCC 6803 is an attractive host for bio-ethanol production due to its ability to directly convert atmospheric carbon dioxide into ethanol using photosystems. To enhance ethanol production in Synechocystis sp.
View Article and Find Full Text PDFMetabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp.
View Article and Find Full Text PDFSynechocystis sp. PCC 6803 is an attractive host for bio-ethanol production. In the present study, a nitrogen starvation approach was applied on an ethanol producing strain for inhibiting the growth, since ethanol production competes with the cell growth.
View Article and Find Full Text PDFMevalonate (MVA) is used to produce various useful products such as drugs, cosmetics and food additives. An MVA-producing strain of Escherichia coli (engineered) was constructed by introducing mvaES genes from Enterococcus faecalis. The engineered strain produced 1.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, proline is a stress protectant interacting with other substrate uptake systems against oxidative stress under low pH conditions. In this study, we performed metabolomics analysis to investigate the response associated with an increase in cell growth rates and maximum densities when cells were treated with proline under normal and acid stress conditions. Metabolome data show that concentrations of components of central metabolism are increased in proline-treated S.
View Article and Find Full Text PDFArthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A.
View Article and Find Full Text PDFAcid stress has been reported to inhibit cell growth and decrease productivity during bio-production processes. In this study, a metabolomics approach was conducted to understand the effect of lactic acid induced stress on metabolite pools in Saccharomyces cerevisiae. Cells were cultured with lactic acid as the acidulant, with or without initial pH control, i.
View Article and Find Full Text PDFWe investigated effects of malic enzyme on ethanol production by Synechocystis sp. PCC 6803 under autotrophic conditions. Deletion of me, which encodes malic enzyme, decreased ethanol production, whereas its overexpression had no effect.
View Article and Find Full Text PDFCyanobacteria have flexible metabolic capability that enables them to adapt to various environments. To investigate their underlying metabolic regulation mechanisms, we performed an integrated analysis of metabolic flux using transcriptomic and metabolomic data of a cyanobacterium Synechocystis sp. PCC 6803, under mixotrophic and photoheterotrophic conditions.
View Article and Find Full Text PDFBackground: 3-hydroxypropionic acid (3HP) is an important chemical precursor for the production of bioplastics. Microbial production of 3HP from glycerol has previously been developed through the optimization of culture conditions and the 3HP biosynthesis pathway. In this study, a novel strategy for improving 3HP production in Escherichia coli was investigated by the modification of central metabolism based on a genome-scale metabolic model and experimental validation.
View Article and Find Full Text PDFWe describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently.
View Article and Find Full Text PDFThixotropic hydrogelators have great potential in biomedical and biotechnological applications. In this study, we report new hydrogelators and their behavior during gel-sol-gel transitions. In particular, cyclo(L-O-hydroxyhexylaspartyl-L-phenylalanyl), which was synthesized with 1,6-hexanediol, formed a thermally/isothermally reversible physical gel with several solvents, including pure water, saline, alcohols, as well as 1.
View Article and Find Full Text PDFTo identify genome-wide targets for gene manipulation for increasing L-lactate production in recombinant Saccharomyces cerevisiae strains, we transformed all available single-gene deletion strains of S. cerevisiae with a plasmid carrying the human L-lactate dehydrogenase gene, and examined L-lactate production in the obtained transformants. The thresholds of increased or decreased L-lactate production were determined based on L-lactate production by the standard strain in repetitive experiments.
View Article and Find Full Text PDFCyanobacteria have received considerable attention as a sustainable energy resource because of their organic material production capacity using light energy and CO2 as a carbon source. Therefore, it is important to understand the cellular metabolism of cyanobacteria for metabolic engineering. In this study, to shed light on the central metabolism of cyanobacteria, we performed transcriptomic and metabolomic analyses of a glucose-tolerant strain of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFDNA microarray analysis was performed to examine the stress tolerance mechanism of a Saccharomyces cerevisiae recombinant strain exhibiting high trehalose accumulation and heat stress tolerance. Results suggest that the upregulation of sugar transporter genes is one of the key events for heat stress tolerance of the recombinant strain.
View Article and Find Full Text PDFIn terms of generating sustainable energy resources, the prospect of producing energy and other useful materials using cyanobacteria has been attracting increasing attention since these processes require only carbon dioxide and solar energy. To establish production processes with a high productivity, in silico models to predict the metabolic activity of cyanobacteria are highly desired. In this study, we reconstructed a genome-scale metabolic model of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDF