A parallel dimeric Aβ(1-40) peptide was prepared, and its structural and fibrillogenic characteristics were examined. The covalent linking of the peptide strongly facilitated the spontaneous formation of thioflavin-T-active, fibrillar aggregates rich in β strands without a lag phase. However, the aggregates formed by the dimeric peptide did not exhibit "seeding activity" to catalyze the formation of amyloid fibrils by wild-type Aβ(1-40) molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Membrane proteins (MPs) play important roles in various cellular processes and are major targets for drugs. Solubilization of MPs is often needed for structural and biophysical studies. For high-resolution nuclear magnetic resonance measurements, there is a size limit of the sample (<100 kDa), and a high thermal stability at an increased temperature is required.
View Article and Find Full Text PDFThe abnormal aggregation and subsequent deposition of amyloid β-protein (Aβ) in the brain are considered central to the pathogenesis of Alzheimer's disease. The two major species of Aβ are Aβ40 and Aβ42, present at an approximate ratio of 9 : 1. Accumulating evidence suggests that neuronal membranes are an important platform of amyloidogenesis by Aβ.
View Article and Find Full Text PDFExtracellular vesicles (EVs) carry various informative components, including signaling proteins, transcriptional regulators, lipids, and nucleic acids. These components are utilized for cell-cell communication between donor and recipient cells. EVs have shown great promise as pharmaceutical-targeting vesicles and have attracted the attention of researchers in the fields of biological and medical science because of their importance as diagnostic and prognostic markers.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have attracted an attention as important targets in the fields of biology and medical science because they contain physiologically active molecules. Curvature-sensing peptides are currently used as novel tools for marker-independent EV detection techniques. A structure-activity correlation study demonstrated that the α-helicity of the peptides is prominently involved in peptide binding to vesicles.
View Article and Find Full Text PDFAntibiotics have been widely used in the medical field as a treatment for infectious diseases, but they are not effective against all Gram-negative bacteria because of their low permeability to the outer membrane. One of the strategies to improve the antibacterial activity of antibiotics is the coadministration of antibiotics and membrane-perturbing antimicrobial peptides for their synergistic effects. However, because of their different pharmacokinetics, their coadministration may not exert expected effects in the clinical stage.
View Article and Find Full Text PDFSmall residue-mediated interhelical packing is ubiquitous in helical membrane proteins: however, the lipid dependence of its stability remains unclear. We previously demonstrated that the introduction of a GXXXG sequence in the middle of de novo-designed (AALALAA) helices (AALALAA AGLALGA AALALAA) facilitated their dimerization, which was abolished by cholesterol. Here single-pair FRET measurements revealed that a longer GXXXGXXXG segment (AALALAA A GLALGA AAGALAA) promoted helix dimerization in POPC/cholesterol bilayers, but not without cholesterol.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2022
Biomembranes composed of various proteins and lipids play important roles in cellular functions, such as signal transduction and substance transport. In addition, some bioactive peptides and pathogenic proteins target membrane proteins and lipids to exert their effects. Therefore, an understanding of dynamic and complex intermolecular interactions among these membrane constituents is needed to elucidate their mechanisms.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are promising candidates for anti-infective drugs. The majority of AMPs are considered to disrupt the lipid matrix of bacterial membranes, exerting bactericidal activity. A number of biophysical studies have been carried out to elucidate the underlying molecular mechanisms.
View Article and Find Full Text PDFProtein-protein interactions between transmembrane helices are essential elements for membrane protein structures and functions. To understand the effects of peptide sequences and lipid compositions on these interactions, single-molecule experiments using model systems comprising artificial peptides and membranes have been extensively performed. However, their dynamic behavior at the atomic level remains largely unclear.
View Article and Find Full Text PDFThe tertiary structures and conformational dynamics of transmembrane (TM) helical proteins are maintained by the interhelical interaction network in membranes, although it is complicated to analyze the underlying driving forces because the amino acid sequences can involve multiple and various types of interactions. To obtain insights into basal and common effects of the number of membrane-spanning segments and membrane cholesterol, we measured stabilities of helix bundles composed of simple TM helices (AALALAA) (1TM) and (AALALAA)-G-(AALALAA) (2TM). Association-dissociation dynamics for 1TM-1TM, 1TM-2TM, and 2TM-2TM pairs were monitored to compare stabilities of 2-, 3-, and 4-helical bundles, respectively, with single-pair fluorescence resonance energy transfer (sp-FRET) in liposome membranes.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are promising candidates for new therapeutics to combat the emergence of an increasing number of multidrug-resistant pathogens. However, a major obstacle to the systemic application of AMPs is their possible toxicity. In this study, we improved the therapeutic index of the typical AMP F5W-magainin 2 by simultaneously introducing positive charges (+9-+10) and Pro residues.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
August 2020
It is widely accepted that the abnormal self-association of amyloid β-protein (Aβ) is central to the pathogenesis of Alzheimer's disease, the most common form of dementia. Accumulating evidence, both in vivo and in vitro, suggests that the binding of Aβ to gangliosides, especially monosialoganglioside GM1, plays an important role in the aggregation of Aβ. This review summarizes the molecular details of the binding of Aβ to ganglioside-containing membranes and subsequent structural changes, as revealed by liposomal and cellular studies.
View Article and Find Full Text PDFAggregational states of amyloid β-protein (Aβ) are critical for its neurotoxicity, although they are not well-characterized, particularly after binding to the cell membranes. This is one reason why the mechanisms of Aβ neurotoxicity are controversial and elusive. In this study, the effects of toxic Aβ-(1-42) fibrils formed in the membrane on cellular processes were investigated using human neuroblastoma SH-SY5Y cells.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
October 2019
Fibrillated aggregation of amyloid β (Aβ) peptides is a potential factor causing toxic amyloid deposition in neurodegenerative diseases. A toxic fibril formation of Aβ is known to be enhanced on the ganglioside-rich lipid membrane containing some amounts of cholesterol and sphingomyelin. This ganglioside-rich membrane is supposed to provide a hydrophobic environment that promotes the formation of Aβ fibrils.
View Article and Find Full Text PDFThe 10th International Peptide Symposium was held in Kyoto last December in conjunction with the 55th Japanese Peptide Symposium. Around 800 peptide scientists from 31 different countries and regions enjoyed sessions covering various aspects of state-of-the-art peptide science, such as synthetic methodology, chemical biology, cell biology, biophysics, and medicinal/ medical applications.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
September 2019
Cdc37 is a protein kinase-targeting molecular chaperone, which cooperates with Hsp90 to assist the folding, assembly and maturation of various signaling kinases. It consists of three distinct domains: the N-terminal, middle, and C-terminal domain. While the middle domain is an Hsp90-binding domain, the N-terminal domain is recognized as a kinase-interacting domain.
View Article and Find Full Text PDFEndowment of pH responsivity to anticancer peptides is a promising approach to achieve better selectivity to cancer tissues. In this research, a template peptide was designed based on magainin 2, an antimicrobial peptide with anticancer activity, and a series of peptides were designed by replacing different numbers of lysine with the unnatural amino acid, 2,3diaminopropionic acid (Dap), which has a positive charge at weakly acidic pH in cancer tissues, but is neutral at physiological pH 7.4.
View Article and Find Full Text PDFMany antimicrobial peptides are considered to kill microbes by permeabilizing cell membranes. This chapter summarizes the driving force of peptide binding to membranes; various mechanisms of lipid bilayer permeabilization including the barrel-stave, toroidal pore, and carpet models; and modes of permeabilization of bacterial and mammalian membranes.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
May 2019
In situ investigations in living cell membranes are important to elucidate the dynamic behaviors of membrane proteins in complex biomembrane environments. Protein-specific labeling is a key technique for the detection of a target protein by fluorescence imaging. The use of post-translational labeling methods using a genetically encodable tag and synthetic probes targeting the tag offer a smaller label size, labeling with synthetic fluorophores, and precise control of the labeling ratio in multicolor labeling compared with conventional genetic fusions with fluorescent proteins.
View Article and Find Full Text PDFDetecting the behaviors of proteins in membranes is often challenging; we need to develop new methods to better understand the mechanisms involved. We have developed two types of peptide-based experimental systems that can detect the self-association of proteins in bilayer environments: 1) a single-pair fluorescence detection system for studying the self-association of transmembrane helices in model membranes; and 2) live-cell fluorescence labeling and analysis of the oligomeric state of membrane proteins using a coiled-coil labeling method. By using these methods, we show that membrane cholesterol significantly affects the self-association of transmembrane helices.
View Article and Find Full Text PDFThe abnormal aggregation of amyloid β-protein (Aβ) is considered central in the pathogenesis of Alzheimer's disease. We focused on membrane-mediated amyloidogenesis and found that amyloid fibrils formed on monosialoganglioside GM1 clusters were more toxic than those formed in aqueous solution. In this study, we investigated the structure of the toxic fibrils by Aβ-(1-40) in detail in comparison with less-toxic fibrils formed in aqueous solution.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
February 2019
Assembly and deposition of amyloid β-protein (Aβ) is an early and invariable pathological event of Alzheimer's disease (AD), a chronic neurodegenerative disease affecting the neurons in the brain of aging population. Thus, clarification of the molecular mechanism underlying Aβ assembly is crucial not only for understanding the pathogenesis of AD, but also for developing disease-modifying remedies. In 1995, ganglioside-bound Aβ (GAβ), with unique molecular characteristics, including its altered immunoreactivity and its conspicuous ability to accelerate Aβ assembly, was discovered in an autopsied brain showing early pathological changes of AD.
View Article and Find Full Text PDFThe interaction of amyloid beta (Aβ) peptides with the cell membrane is one of the factors enhancing Aβ aggregation, which is closely related to neurodegenerative disease. In this work, we performed molecular dynamics (MD) simulation to investigate the initial stage of adhesion of Aβ to a GM1 ganglioside-containing membrane. Conformational change of Aβ due to interaction with the membrane was monitored and compared with that of Aβ observed in the previous study.
View Article and Find Full Text PDFTo facilitate clinical trials of disease-modifying therapies for Alzheimer's disease, which are expected to be most efficacious at the earliest and mildest stages of the disease, supportive biomarker information is necessary. The only validated methods for identifying amyloid-β deposition in the brain-the earliest pathological signature of Alzheimer's disease-are amyloid-β positron-emission tomography (PET) imaging or measurement of amyloid-β in cerebrospinal fluid. Therefore, a minimally invasive, cost-effective blood-based biomarker is desirable.
View Article and Find Full Text PDF