Publications by authors named "Katsuji Sugita"

Polymorphic control is vital for the quality control of pharmaceutical crystals. Here, we investigated the relationship between the hydrate and anhydrate polymorphs of a monoacylglycerol acyltransferase 2 inhibitor (S-309309). Solvent evaporation and slurry conversion revealed two polymorphs, the hydrate and the solvate.

View Article and Find Full Text PDF

This study aimed to investigate the crystal forms of an originally designed Y5 receptor antagonist of neuropeptide Y. Polymorphic screening was performed via solvent evaporation and slurry conversion using various solvents. The obtained crystal forms α, β, and γ were characterized by X-ray powder diffraction analysis.

View Article and Find Full Text PDF

The transformation of a crystalline drug into an amorphous form is a promising way to enhance the oral bioavailability of poorly water-soluble drugs. Blending of a carrier, such as a hydrophilic polymer, with an amorphous drug is a widely used method to produce a solid dispersion and inhibit crystallization. This study investigates an experimental grade of hydroxypropyl methylcellulose acetate succinate, HPMCAS-MX (MX), as a solid dispersion carrier.

View Article and Find Full Text PDF

We explored orally effective thyrotropin-releasing hormone (TRH) mimetics, which show high central nervous system effects in structure-activity relationship studies based on in vivo antagonistic activity on reserpine-induced hypothermia (anti-hypothermic effect) in mice starting from TRH. This led us to the TRH mimetic: [(4S,5S)-(5-methyl-2-oxooxazolidine-4-yl)carbonyl]-[3-(thiazol-4-yl)-L-alanyl]-L-prolinamide 1, which shows a higher anti-hypothermic effect compared with that of TRH after oral administration. We next attempted further chemical modification of the N- and C-terminus of 1 to find more orally effective TRH mimetics.

View Article and Find Full Text PDF

We discovered the orally active thyrotropin-releasing hormone (TRH) mimetic: (4S,5S)-5-methyl-N-{(2S)-1-[(2R)-2-methylpyrrolidin-1-yl]-1-oxo-3-(1,3-thiazol-4-yl)propan-2-yl}-2-oxo-1,3-oxazolidine-4-carboxamide 1 (rovatirelin). The central nervous system (CNS) effect of rovatirelin after intravenous (iv) administration is 100-fold higher than that of TRH. As 1 has four asymmetric carbons in its molecule, there are 16 stereoisomers.

View Article and Find Full Text PDF

We have explored orally effective thyrotropin-releasing hormone (TRH) mimetics, showing oral bioavailability and brain penetration by structure-activity relationship (SAR) study on the basis of in vivo antagonistic activity on reserpine-induced hypothermia in mice. By primary screening of the synthesized TRH mimetics, we found a novel TRH mimetic: l-pyroglutamyl-[3-(thiazol-4-yl)-l-alanyl]-l-prolinamide with a high central nervous system effect compared with TRH as a lead compound. Further SAR optimization studies of this lead compound led to discovery of a novel orally effective TRH mimetic: 1-{-[(4,5)-(5-methyl-2-oxooxazolidine-4-yl)carbonyl]-3-(thiazol-4-yl)-l-alanyl}-(2)-2-methylpyrrolidine trihydrate (rovatirelin hydrate), which was selected as a candidate for clinical trials.

View Article and Find Full Text PDF