Publications by authors named "Katsuhiro Shiono"

To acclimate to hypoxic waterlogged conditions, the roots of wetland plants form a radial oxygen loss (ROL) barrier that can promote oxygen diffusion to the root tips. We hypothesized that the low-nitrate concentrations that occur after molecular oxygen is consumed in waterlogged soils are an environmental trigger for ROL barrier formation in rice (Oryza sativa). We previously identified 128 tissue-specific up/downregulated genes during rice ROL barrier formation.

View Article and Find Full Text PDF

Background And Aims: Internal root aeration is essential for root growth in waterlogged conditions. Aerenchyma provides a path for oxygen to diffuse to the roots. In most wetland species, including rice, a barrier to radial oxygen loss (ROL) allows more of the oxygen to diffuse to the root tip, enabling root growth into anoxic soil.

View Article and Find Full Text PDF

Submergence during germination impedes aerobic metabolisms and limits the growth of most higher plants. However, some wetland plants including rice can germinate under submerged conditions. It has long been hypothesized that the first elongating shoot tissue, the coleoptile, acts as a snorkel to acquire atmospheric oxygen (O) to initiate the first leaf elongation and seminal root emergence.

View Article and Find Full Text PDF

Plant hormones can act in synergistic and antagonistic ways in response to biotic and abiotic stresses and during plant growth and development. Thus, a technique is needed to simultaneously determine the distribution and concentration of several plant hormones. A relatively new technology, mass spectrometry imaging (MSI), enables the direct mapping and imaging of biomolecules on tissue sections.

View Article and Find Full Text PDF

To acclimate to waterlogged conditions, wetland plants form a barrier to radial oxygen loss (ROL) that can enhance oxygen transport to the root apex. We hypothesized that one or more hormones are involved in the induction of the barrier and searched for such hormones in rice. We previously identified 98 genes that were tissue-specifically upregulated during ROL barrier formation in rice.

View Article and Find Full Text PDF

Background: Detailed datasets containing root system and its architecture in soil are required to improve understanding of resource capture by roots. However, most of the root study methods have paid little attention to make and preserve whole root specimens. This study introduces root system sampling equipment that makes the entire root specimen with minimum impairment and without displacement of the spatial arrangement of the root system in root boxes.

View Article and Find Full Text PDF

Internal aeration is crucial for root growth under waterlogged conditions. Many wetland plants have a structural barrier that impedes oxygen leakage from the basal part of roots called a radial oxygen loss (ROL) barrier. ROL barriers reduce the loss of oxygen transported via the aerenchyma to the root tips, enabling long-distance oxygen transport for cell respiration at the root tip.

View Article and Find Full Text PDF

A barrier to radial oxygen loss (ROL), which reduces the loss of oxygen transported via the aerenchyma to the root tips, enables the roots of wetland plants to grow into anoxic/hypoxic waterlogged soil. However, little is known about its genetic regulation. Quantitative trait loci (QTLs) mapping can help to understand the factors that regulate barrier formation.

View Article and Find Full Text PDF

Plant hormones can act in synergistic and antagonistic ways in response to biotic and abiotic stresses and in plant growth and development. Thus, a technique is needed to simultaneously determine the distributions and concentrations of several plant hormones. Previously, we reported that localizations of two plant hormones [cytokinin (CK) and abscisic acid (ABA)] can be simultaneously visualized in a plant tissue using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS).

View Article and Find Full Text PDF

Passage cells are frequently found in the exodermis and the endodermis of the roots. Because passage cells lack an apoplastic diffusion barrier, they are thought to provide pathways for the transport of nutrients and the entrance of endomycorrhizal fungi. Exodermal passage cells possess Casparian strips but not suberin lamellae.

View Article and Find Full Text PDF

Internal aeration is crucial for root growth under waterlogged conditions. Some wetland plants have a structural barrier that impedes oxygen leakage from the basal part of roots called a radial oxygen loss (ROL) barrier. The ROL barrier reduces loss of oxygen transported via the aerenchyma to the root tips, enabling root growth into anoxic soil.

View Article and Find Full Text PDF

Plant hormones act as important signaling molecules that regulate responses to abiotic stress as well as plant growth and development. Because their concentrations of hormones control the physiological responses in the target tissue, it is important to know the distributions and concentrations in the tissues. However, it is difficult to determine the hormone concentration on the plant tissue as a result of the limitations of conventional methods.

View Article and Find Full Text PDF

In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective.

View Article and Find Full Text PDF

Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens.

View Article and Find Full Text PDF

Internal aeration is crucial for root growth in waterlogged soil. A barrier to radial oxygen loss (ROL) can enhance long-distance oxygen transport via the aerenchyma to the root tip; a higher oxygen concentration at the apex enables root growth into anoxic soil. The ROL barrier is formed within the outer part of roots (OPR).

View Article and Find Full Text PDF

Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils.

View Article and Find Full Text PDF

Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis.

View Article and Find Full Text PDF

Background And Aims: Many wetland species form aerenchyma and a barrier to radial O(2) loss (ROL) in roots. These features enhance internal O(2) diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

View Article and Find Full Text PDF

• To adapt to waterlogging in soil, some gramineous plants, such as maize (Zea mays), form lysigenous aerenchyma in the root cortex. Ethylene, which is accumulated during waterlogging, promotes aerenchyma formation. However, the molecular mechanism of aerenchyma formation is not understood.

View Article and Find Full Text PDF

Laser microdissection (LM) combined with microarray analysis or next-generation sequencing of cDNA is a powerful tool for understanding molecular events in individual cell types of plants as well as animals. Obtaining high quality RNA is essential for this approach. For plant tissues, paraffin-embedded sections better preserve cell structure than do frozen sections.

View Article and Find Full Text PDF

The male gametophyte and tapetum play different roles during anther development although they are differentiated from the same cell lineage, the L2 layer. Until now, it has not been possible to delineate their transcriptomes due to technical difficulties in separating the two cell types. In the present study, we characterized the separated transcriptomes of the rice microspore/pollen and tapetum using laser microdissection (LM)-mediated microarray.

View Article and Find Full Text PDF

In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest.

View Article and Find Full Text PDF