Assembly of the Mu transpososome is dependent on specific binding sites for the MuA transposase near the ends of the phage genome. MuA also contacts terminal nucleotides but only upon transpososome assembly, and base-specific recognition of the terminal nucleotides is critical for assembly. We show that Mu ends lacking the terminal 5 bp can form transpososomes, while longer DNA substrates with mutated terminal nucleotides cannot.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2002
Clp/Hsp100 ATPases comprise a large family of ATP-dependent chaperones, some of which are regulatory components of two-component proteases. Substrate specificity resides in the Clp protein and the current thinking is that Clp proteins recognize motifs located near one or the other end of the substrate. We tested whether or not ClpA and ClpX can recognize tags when they are located in the interior of the primary sequence of the substrate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2002
Phage Mu DNA transposes to duplex target DNA sites with limited sequence specificity. Here we demonstrate that Mu transposition exhibits a strong target site preference for all single-nucleotide mismatches. This finding has implications for the mechanism of transposition and provides a powerful tool for genomic research.
View Article and Find Full Text PDF