Although left ventricular assist devices (LVADs) are an alternative to heart transplantation, their artificial surfaces often lead to serious thrombotic complications requiring high-risk device replacement. Coating blood-contacting surfaces with antithrombogenic endothelial cells is considered an effective strategy for preventing thrombus formation. However, this concept has not yet been successfully implemented in LVADs, as severe cell loss is to be expected, especially on the impeller surface with high prothrombogenic supraphysiological shear stress.
View Article and Find Full Text PDFlung perfusion (ESLP) is used for organ reconditioning, repair, and re-evaluation prior to transplantation. Since valid preclinical animal models are required for translationally relevant studies, we developed a 17 mL low-volume ESLP for double- and single-lung application that enables cost-effective optimal compliance "reduction" of the 3R principles of animal research. In single-lung mode, ten Fischer344 and Lewis rat lungs were subjected to ESLP and static cold storage using STEEN or PerfadexPlus.
View Article and Find Full Text PDFTo provide an alternative treatment option for patients with end-stage lung disease, we aim for biohybrid lung development (BHL) based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. For long-term BHL application, complete hemocompatibility of all blood-contacting surfaces is indispensable and can be achieved by their endothelialization. Indeed, albumin/heparin (AH) coated HFM enables initial endothelialization, but as inexplicable cell loss under flow conditions was seen, we assessed an alternative HFM coating using fibronectin (FN).
View Article and Find Full Text PDFThe role of endothelial cells in the pathophysiology of antibody-mediated rejection after renal transplantation has been widely investigated. We expand this scenario to the impact of epithelial cells on the microenvironment during rejection. Primary proximal tubular epithelial cells were stimulated via HLA class I, CD155 and CD166 based on their potential signal-transducing capacity to mediate back signaling after encounter with either T/NK cells or donor-specific antibodies.
View Article and Find Full Text PDFRespiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions.
View Article and Find Full Text PDFAlveolar epithelial type II (ATII)-like cells can be generated from murine embryonic stem cells (ESCs), although to date, no robust protocols applying specific differentiation factors are established. We hypothesized that the keratinocyte growth factor (KGF), an important mediator of lung organogenesis and primary ATII cell maturation and proliferation, together with dexamethasone, 8-bromoadenosine-cAMP, and isobutylmethylxanthine (DCI), which induce maturation of primary fetal ATII cells, also support the alveolar differentiation of murine ESCs. Here we demonstrate that the above stimuli synergistically potentiate the alveolar differentiation of ESCs as indicated by increased expression of the surfactant proteins (SP-) C and SP-B.
View Article and Find Full Text PDFBackground: The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease- and human patient-specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line.
Methods And Results: With the use of a standard embryoid body-based differentiation protocol for ES cells, iPS cells as well as ES cells were differentiated for 24 days.