Background: Increased cardiac troponin (cTn) concentrations occur in acute myocardial injury and chronic diseases. Characterization of cTn composition in the circulation may assist in differentiating etiologies of myocardial injury. Our goal was to study cTn composition and kinetics in patients following type 1 myocardial infraction (T1MI), cardiac procedures, and chronic heart diseases to establish the relationship between cTn composition and clinical diagnosis.
View Article and Find Full Text PDFBackground: Current studies suggest that cardiac troponin (cTn) forms in the circulation may vary in different clinical scenarios. Our aim was to design a combination of cTn assays specific to the main cTn forms and to evaluate their analytical performance.
Methods: We developed immunoassays specific for measuring (1) long-cTnT cTnI-cTnT-TnC (ITC) ternary complex, with cTnT in long form without cleavage at the C-terminal amino acids residue 189-223, designated "long-cTnT ITC complex assay;" (2) both the long-cTnT ITC complex plus short-cTnT ITC complex, designated "hs-total ITC complex assay;" (3) the central part of cTnT of both the long-cTnT ITC complex and free cTnT, designated "hs-cTnT assay.
Int J Mol Sci
December 2024
Pediatric dilated cardiomyopathy (DCM) is a rare heart muscle disorder leading to the enlargement of all chambers and systolic dysfunction. We identified a novel de novo variant, c.88A>G (p.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2).
View Article and Find Full Text PDFImmunodetection of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) in blood samples is widely used for the diagnosis of acute myocardial infarction. The cardiac troponin complex (ITC-complex), comprising cTnI, cTnT, and troponin C (TnC), makes up a large portion of troponins released into the bloodstream after the necrosis of cardiomyocytes. However, the stability of the ITC-complex has not been fully investigated.
View Article and Find Full Text PDFObjectives: Heparin is a highly charged polysaccharide used as an anticoagulant to prevent blood coagulation in patients with presumed myocardial infarction and to prepare heparin plasma samples for laboratory tests. There are conflicting data regarding the effects of heparin on the measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT), which are used for the immunodiagnosis of acute myocardial infarction. In this study, we investigated the influence of heparin on the immunodetection of human cardiac troponins.
View Article and Find Full Text PDFIt is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions.
View Article and Find Full Text PDFWe characterized a novel genetic variant c.292G > A (p.E98K) in the gene encoding cardiac tropomyosin 1.
View Article and Find Full Text PDFBackground: Blood measurement of cardiac troponin T (cTnT) is one of the most widespread methods of acute myocardial infarction (MI) diagnosis. cTnT degradation may have a significant influence on the precision of cTnT immunodetection; however, there are no consistent data describing the level and sites of cTnT proteolysis in the blood of MI patients. In this study, we bordered major cTnT fragments and quantified their relative abundance in the blood at different times after MI.
View Article and Find Full Text PDFInteractions of key amyloidogenic proteins with SARS-CoV-2 proteins may be one of the causes of expanding and delayed post-COVID-19 neurodegenerative processes. Furthermore, such abnormal effects can be caused by proteins and their fragments circulating in the body during vaccination. The aim of our work was to analyze the effect of the receptor-binding domain of the coronavirus S-protein domain (RBD) on alpha-synuclein amyloid aggregation.
View Article and Find Full Text PDFTropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R.
View Article and Find Full Text PDFAlternative ORFs in-frame with the known genes are challenging to reveal. Yet they may contribute significantly to proteome diversity. Here we focused on the individual expression of the SERPINA1 gene exon 5 leading to direct translation of alpha1-antitrypsin (AAT) C-terminal peptides.
View Article and Find Full Text PDFCardiovascular diseases (CVD) are among the leading causes of death and disability worldwide. Pregnancy-associated plasma protein-A (PAPP-A) is a matrix metalloprotease localized on the cell surface. One of the substrates that PAPP-A cleaves is the insulin-like growth factor binding protein-4 (IGFBP-4), a member of the family of proteins that bind insulin-like growth factor (IGF).
View Article and Find Full Text PDFBackground: Cardiac troponin I (cTnI) and cTnT are the established biomarkers of cardiomyocyte damage and the recommended biomarkers for the diagnosis of acute myocardial infarction (MI). High-sensitivity immunochemical diagnostic systems are able to measure the cTn concentrations in the blood of a majority of healthy people. At the same time, the concentration of cTn may be increased not only after MI but also because of other pathologies that might affect myocardium.
View Article and Find Full Text PDFBackground: The measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) is widely used for the diagnosis of acute myocardial infarction (AMI). However, there are conflicting data regarding what forms of cTnI and cTnT are present in the blood of AMI patients. We investigated cTnI and cTnT as components of troponin complexes in the blood of AMI patients.
View Article and Find Full Text PDFBackground: In the blood of patients with acute myocardial infarction (AMI), cardiac troponin I (cTnI) presents as an intact molecule with a repertoire of proteolytic fragments. The degradation of cTnI might negatively influence its precise immunodetection. In this study we identified cTnI fragments and calculated their ratio in the blood of patients at different times after AMI to discriminate the most stable part(s) of cTnI.
View Article and Find Full Text PDFBackground: Cardiac troponin T (cTnT) is an acknowledged biomarker of acute myocardial infarction (AMI) that is known to be prone to proteolytic degradation in serum. Such degradation is usually explained by the action of μ-calpain, although there could be other candidates for that role. In the current study, we explored the hypothesis that thrombin-mediated cTnT cleavage occurs as a result of the serum sample preparation.
View Article and Find Full Text PDFBackground: Autoantibodies to cardiac troponins (TnAAbs) could negatively affect cardiac troponin I (cTnI) measurements by TnAAbs-sensitive immunoassays. We investigated the epitope specificity of TnAAbs and its influence on cTnI immunodetection in patients with acute myocardial infarction (AMI).
Methods: The specificity of TnAAbs was studied in immunoassays and gel-filtration experiments.
Troponin complex is a component of skeletal and cardiac muscle thin filaments. It consists of three subunits - troponin I, T, and C, and it plays a crucial role in muscle activity, connecting changes in intracellular Ca2+ concentration with generation of contraction. In spite of more than 40 years of studies, many aspects of troponin functioning are still not completely understood, and several models describing the mechanism of muscle contraction exist.
View Article and Find Full Text PDFAdiponectin (Adn) is a protein that circulates in the blood in several oligomeric forms, namely low-, medium-, and high-molecular-weight forms. Adn may serve as a risk factor for type 2 diabetes mellitus (T2DM). The aims of this work were (1) to produce monoclonal antibodies (MAbs) specific to different Adn oligomeric forms, (2) to design immunoassays suitable for measuring the Adn forms present in human blood, and (3) to investigate the changes in Adn forms that occur in patients with T2DM.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2012
The cardiac isoform of troponin I is a reliable biomarker of damaged cardiomyocytes that accompanies such severe cardiovascular diseases as myocardial infarction. Monoclonal antibody 19C7 recognizes troponin I in the bloodstream with high affinity and specificity. Recombinant antibodies can be used to improve detection systems based on monoclonal antibodies produced with hybridoma technology.
View Article and Find Full Text PDF