Publications by authors named "Katrine Louise Svane"

A barrier to understanding the factors driving catalysis in the oxygen evolution reaction (OER) is understanding multiple overlapping redox transitions in the OER catalysts. The complexity of these transitions obscure the relationship between the coverage of adsorbates and OER kinetics, leading to an experimental challenge in measuring activity descriptors, such as binding energies, as well as adsorbate interactions, which may destabilize intermediates and modulate their binding energies. Herein, we utilize a newly designed optical spectroelectrochemistry system to measure these phenomena in order to contrast the behavior of two electrocatalysts, cobalt oxyhydroxide (CoOOH) and cobalt-iron hexacyanoferrate (cobalt-iron Prussian blue, CoFe-PB).

View Article and Find Full Text PDF

The production of hydrogen at a large scale by the environmentally-friendly electrolysis process is currently hampered by the slow kinetics of the oxygen evolution reaction (OER). We report a solid electrocatalyst α-LiIrO which upon oxidation/delithiation chemically reacts with water to form a hydrated birnessite phase, the OER activity of which is five times greater than its non-reacted counterpart. This reaction enlists a bulk redox process during which hydrated potassium ions from the alkaline electrolyte are inserted into the structure while water is oxidized and oxygen evolved.

View Article and Find Full Text PDF

We report the high-pressure properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) templated by dimethylammonium (NH2(CH3)2, DMA+) with the general formula [DMA]MI0.5CrIII0.5(HCOO)3, where MI = Na+ (DMANaCr) and K+ (DMAKCr).

View Article and Find Full Text PDF