Publications by authors named "Katrine Aspmo Pfaffhuber"

Article Synopsis
  • Anthropogenic activities release around 2,000 metric tons of mercury annually, affecting remote ecosystems and leading to inconsistencies in reported emissions and atmospheric concentrations in the Northern Hemisphere.
  • Despite reported increases in mercury emissions over the past 30 years, data analysis shows a declining trend in atmospheric mercury levels, indicating that actual emissions must have decreased significantly, contradicting existing inventories.
  • By using statistical modeling of data from 51 monitoring stations, the study highlights a decline in mercury concentrations from 2005 to 2020, suggesting that reductions in local emissions, rather than reemissions of legacy mercury, are primarily responsible for these trends and raising questions about the reliability of current emission inventories.
View Article and Find Full Text PDF

During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming.

View Article and Find Full Text PDF

The Arctic region forms a unique environment with specific physical, chemical, and biological processes affecting mercury (Hg) cycles and limited anthropogenic Hg sources. However, historic global emissions and long range atmospheric transport has led to elevated Hg in Arctic wildlife and waterways. Continuous atmospheric Hg measurements, spanning 20 years, and increased monitoring sites has allowed a more comprehensive understanding of how Arctic atmospheric mercury is changing over time.

View Article and Find Full Text PDF