Publications by authors named "Katrina Woolcock"

Neurohypophysial peptides are ancient and evolutionarily highly conserved neuropeptides that regulate many crucial physiological functions in vertebrates and invertebrates. The human neurohypophysial oxytocin/vasopressin (OT/VP) signaling system with its four receptors has become an attractive drug target for a variety of diseases, including cancer, pain, cardiovascular indications, and neurological disorders. Despite its promise, drug development faces hurdles, including signaling complexity, selectivity and off-target concerns, translational interspecies differences, and inefficient drug delivery.

View Article and Find Full Text PDF

Solid phase peptide synthesis using tert-butyloxycarbonyl/benzyl chemistry (Boc-SPPS) is important for producing peptides for fundamental research as well as for clinical use. During Boc-SPPS, liquid anhydrous hydrogen fluoride (HF) is used to remove the side chain protecting groups of the assembled peptide and to release it from the resin. Here, we provide a detailed protocol for "HF cleavage," aiming to improve accessibility and the use of this valuable and well-validated technique.

View Article and Find Full Text PDF

Small RNAs are used to silence transposable elements (TEs) in many eukaryotes, which use diverse evolutionary solutions to identify TEs. In ciliated protozoans, small-RNA-mediated comparison of the germline and somatic genomes underlies identification of TE-related sequences, which are then eliminated from the soma. Here, we describe an additional mechanism of small-RNA-mediated identification of TE-related sequences in the ciliate Tetrahymena.

View Article and Find Full Text PDF

Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features.

View Article and Find Full Text PDF

HP1 proteins are major components of heterochromatin, which is generally perceived to be an inert and transcriptionally inactive chromatin structure. Yet, HP1 binding to chromatin is highly dynamic and robust silencing of heterochromatic genes can involve RNA processing. Here, we demonstrate by a combination of in vivo and in vitro experiments that the fission yeast HP1(Swi6) protein guarantees tight repression of heterochromatic genes through RNA sequestration and degradation.

View Article and Find Full Text PDF

RNAi pathways are prevalent throughout the eukaryotic kingdom and are well known to regulate gene expression on a post-transcriptional level in the cytoplasm. Less is known about possible functions of RNAi in the nucleus. In the fission yeast Schizosaccharomyces pombe, RNAi is crucial to establish and maintain centromeric heterochromatin and functions to repress genome activity by a chromatin silencing mechanism referred to as cotranscriptional gene silencing (CTGS).

View Article and Find Full Text PDF

In the fission yeast S. pombe, the RNA interference (RNAi) pathway is required to generate small interfering RNAs (siRNAs) that mediate heterochromatic silencing of centromeric repeats. Here, we demonstrate that RNAi also functions to repress genomic elements other than constitutive heterochromatin.

View Article and Find Full Text PDF

The fission yeast Cid14 protein belongs to a family of noncanonical poly(A) polymerases which have been implicated in a broad range of biological functions. Here we describe an extensive Cid14 protein-protein interaction network and its biochemical dissection. Cid14 most stably interacts with the zinc-knuckle protein Air1 to form the Cid14-Air1 complex (CAC).

View Article and Find Full Text PDF

DNA double strand breaks (DSB) can be repaired either via a sequence independent joining of DNA ends or via homologous recombination. We established a detection system in Drosophila melanogaster to investigate the impact of sequence constraints on the usage of the homology based DSB repair via single strand annealing (SSA), which leads to recombination between direct repeats with concomitant loss of one repeat copy. First of all, we find the SSA frequency to be inversely proportional to the spacer length between the repeats, for spacers up to 2.

View Article and Find Full Text PDF