Publications by authors named "Katrina Neville"

Movement sonification has emerged as a promising approach for rehabilitation and motion control. Despite significant advancements in sensor technologies, challenges remain in developing cost-effective, user-friendly, and reliable systems for gait detection and sonification. This study introduces a novel wearable personalised sonification and biofeedback device to enhance movement awareness for individuals with irregular gait and posture.

View Article and Find Full Text PDF

The brain continually reorganizes its functional network to adapt to post-stroke functional impairments. Previous studies using static modularity analysis have presented global-level behavior patterns of this network reorganization. However, it is far from understood how the brain reconfigures its functional network dynamically following a stroke.

View Article and Find Full Text PDF

The brain's functional network can be analyzed as a set of distributed functional modules. Previous studies using the static method suggested the modularity of the brain function network decreased due to stroke; however, how the modular network changes after stroke, particularly over time, is far from understood. This study collected resting-state functional MRI data from 15 stroke patients and 15 age-matched healthy controls.

View Article and Find Full Text PDF

Background: Motor impairment is a common consequence of stroke causing difficulty in independent movement. The first month of post-stroke rehabilitation is the most effective period for recovery. Movement imagination, known as motor imagery, in combination with virtual reality may provide a way for stroke patients with severe motor disabilities to begin rehabilitation.

View Article and Find Full Text PDF

Introduction: Functional magnetic resonance imaging (fMRI) has shown that aging disturbs healthy brain organization and functional connectivity. However, how this age-induced alteration impacts dynamic brain function interaction has not yet been fully investigated. Dynamic function network connectivity (DFNC) analysis can produce a brain representation based on the time-varying network connectivity changes, which can be further used to study the brain aging mechanism for people at different age stages.

View Article and Find Full Text PDF