Publications by authors named "Katrina Macleod"

The physiological diversity of inhibitory neurons provides ample opportunity to influence a wide range of computational roles through their varied activity patterns, especially via feedback loops. In the avian auditory brain stem, inhibition originates primarily from the superior olivary nucleus (SON), and so it is critical to understand the intrinsic physiological properties and processing capabilities of these neurons. Neurons in the SON receive ascending input via the cochlear nuclei: directly from the intensity-coding cochlear nucleus angularis (NA) and indirectly via the interaural timing nucleus laminaris (NL), which itself receives input from cochlear nucleus magnocellularis (NM).

View Article and Find Full Text PDF

This paper explores whether a structured history-taking tool yields useful descriptions of children's looking skills. Parents of 32 children referred to a specialist communication clinic reported their child's looking skills using the Functional Vision for Communication Questionnaire (FVC-Q), providing descriptions of single object fixation, fixation shifts between objects and fixation shifts from object to person. Descriptions were compared with clinical assessment.

View Article and Find Full Text PDF

In the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two divisions of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus).

View Article and Find Full Text PDF

Diverse physiological phenotypes in a neuronal population can broaden the range of computational capabilities within a brain region. The avian cochlear nucleus angularis (NA) contains a heterogeneous population of neurons whose variation in intrinsic properties results in electrophysiological phenotypes with a range of sensitivities to temporally modulated input. The low-threshold potassium conductance (G) is a key feature of neurons involved in fine temporal structure coding for sound localization, but a role for these channels in intensity or spectrotemporal coding has not been established.

View Article and Find Full Text PDF

Single neurons function along a spectrum of neuronal operating modes whose properties determine how the output firing activity is generated from synaptic input. The auditory brain stem contains a diversity of neurons, from pure coincidence detectors to pure integrators and those with intermediate properties. We investigated how intrinsic spike initiation mechanisms regulate neuronal operating mode in the avian cochlear nucleus.

View Article and Find Full Text PDF

Unlabelled: Medial entorhinal cortex (MEC) grid cells exhibit firing fields spread across the environment on the vertices of a regular tessellating triangular grid. In rodents, the size of the firing fields and the spacing between the firing fields are topographically organized such that grid cells located more ventrally in MEC exhibit larger grid fields and larger grid-field spacing compared with grid cells located more dorsally. Previous experiments in brain slices from rodents have shown that several intrinsic cellular electrophysiological properties of stellate cells in layer II of MEC change systematically in neurons positioned along the dorsal-ventral axis of MEC, suggesting that these intrinsic cellular properties might control grid-field spacing.

View Article and Find Full Text PDF

In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity.

View Article and Find Full Text PDF

Both bats and rats exhibit grid cells in medial entorhinal cortex that fire as they visit a regular array of spatial locations. In rats, grid-cell firing field properties correlate with theta-frequency rhythmicity of spiking and membrane-potential resonance; however, bat grid cells do not exhibit theta rhythmic spiking, generating controversy over the role of theta rhythm. To test whether this discrepancy reflects differences in rhythmicity at a cellular level, we performed whole-cell patch recordings from entorhinal neurons in both species to record theta-frequency resonance.

View Article and Find Full Text PDF

The intrinsic properties of tonically firing neurons in the cochlear nucleus contribute to representing average sound intensity by favoring synaptic integration across auditory nerve inputs, reducing phase locking to fine temporal acoustic structure and enhancing envelope locking. To determine whether tonically firing neurons of the avian cochlear nucleus angularis (NA) resemble ideal integrators, we investigated their firing responses to noisy current injections during whole cell patch-clamp recordings in brain slices. One subclass of neurons (36% of tonically firing neurons, mainly subtype tonic III) showed no significant changes in firing rate with noise fluctuations, acting like pure integrators.

View Article and Find Full Text PDF

Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression.

View Article and Find Full Text PDF

Alterations in synaptic strength over short time scales, termed short-term synaptic plasticity, can gate the flow of information through neural circuits. Different information can be extracted from the same presynaptic spike train depending on the activity- and time-dependent properties of the plasticity at a given synapse. The parallel processing in the brain stem auditory pathways provides an excellent model system for investigating the functional implications of short-term plasticity in neural coding.

View Article and Find Full Text PDF

This Primer focuses on detection of the small interaural time differences that underlie sound localization.

View Article and Find Full Text PDF

Many of the computational principles for sound localization have emerged from the study of avian brains, especially for the construction of codes for interaural timing differences. Our understanding of the neural codes for interaural level differences, and other intensity-related, non-localization sound processing, has lagged behind. In birds, cochlear nucleus angularis (NA) is an obligatory relay for intensity processing.

View Article and Find Full Text PDF

In the auditory system, precise encoding of temporal information is critical for sound localization, a task with direct behavioral relevance. Interaural timing differences (ITDs) are computed using axonal delay lines and cellular coincidence detectors in nucleus laminaris (NL). We present morphological and physiological data on the timing circuits in the emu, Dromaius novaehollandiae, and compare these results with those from the barn owl (Tyto alba) and the domestic chick (Gallus gallus).

View Article and Find Full Text PDF

Nucleus angularis (NA), one of the two cochlear nuclei in birds, is important for processing sound intensity for localization and most likely has role in sound recognition and other auditory tasks. Because the synaptic properties of auditory nerve inputs to the cochlear nuclei are fundamental to the transformation of auditory information, we studied the properties of these synapses onto NA neurons using whole cell patch-clamp recordings from auditory brain stem slices from embryonic chickens (E16-E20). We measured spontaneous excitatory postsynaptic currents (EPSCs), and evoked EPSCs and excitatory postsynaptic potentials (EPSPs) by using extracellular stimulation of the auditory nerve.

View Article and Find Full Text PDF