An unusual aspect of the biology of nematodes is the attachment of phosphorylcholine (PC) to carbohydrate. The attachment appears to play an important role in nematode development and, in some parasitic species, in immunomodulation. This article considers the nature of the biosynthetic pathway of nematode PC-containing glycoconjugates and, in particular, the identity of the final component in the pathway - the enzyme that transfers PC to carbohydrate (the 'PC transferase').
View Article and Find Full Text PDFAn unusual feature of nematodes is the covalent attachment of immunomodulatory phosphorylcholine (PC) moieties to N-type glycans. Our previous work on the filarial nematode glycoprotein ES-62 has enabled us to predict the identity of enzymes necessary for PC-N-glycan biosynthesis. Here, we addressed these predictions using gene knockout technology applied to C.
View Article and Find Full Text PDFFilarial nematodes, parasites of vertebrates, including humans, secrete immunomodulatory molecules into the host environment. We have previously demonstrated that one such molecule, the phosphorylcholine-containing glycoprotein ES-62, acts to bias the immune response toward an anti-inflammatory/Th2 phenotype that is conducive to both worm survival and host health. For example, although ES-62 initially induces macrophages to produce low levels of IL-12 and TNF-alpha, exposure to the parasite product ultimately renders the cells unable to produce these cytokines in response to classic stimulators such as LPS/IFN-gamma.
View Article and Find Full Text PDFWe have previously shown in an in vitro study that the filarial nematode phosphorylcholine (PC)-containing glycoprotein ES-62 promotes a murine dendritic cell (DC) phenotype that induces T helper type 2 (Th2) responses. We now show that, in addition to directly priming Th2 responses, ES-62 can act to dampen down the pro-inflammatory DC responses elicited by lipopolysaccharide. Furthermore, we also demonstrate that murine DCs and macrophages derived ex vivo from bone marrow cells exposed in vivo to ES-62 by release from osmotic pumps are hyporesponsive to subsequent stimulation with lipopolysaccharide.
View Article and Find Full Text PDFES-62 is a phosphorylcholine (PC)-containing glycoprotein secreted by filarial nematodes, parasites of vertebrates including humans. We have previously demonstrated that pre-exposure to this molecule in vitro interferes with subsequent B-cell receptor (BCR)-dependent activation of murine splenic B lymphocytes. To investigate the significance of this during filarial nematode infection, we now employ mice exposed to ES-62, at concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitized humans, via release from implanted osmotic pumps.
View Article and Find Full Text PDFFilarial nematodes produce proteins containing phosphorylcholine (PC) covalently attached to N-linked glycans. Our previous work has suggested that transfer of PC might be dependent on a metabolite of the Kennedy pathway of phospholipid biosynthesis. In this study we have investigated whether the end product of this pathway, phosphatidylcholine, and in addition, sphingomyelin, could act as PC donors.
View Article and Find Full Text PDF