Publications by authors named "Katrina J Edwards"

Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities.

View Article and Find Full Text PDF

Sulfide mineral precipitation occurs at mid-ocean ridge (MOR) spreading centers, both in the form of plume particles and seafloor massive sulfide structures. A common constituent of MOR is the iron-bearing sulfide mineral pyrrhotite, which was chosen as a substrate for in-situ incubation studies in shallow waters of Catalina Island, CA to investigate the colonization of iron-oxidizing bacteria. Microbial community datasets were obtained from in-situ incubated pyrrhotite, allowing for direct comparison to microbial communities of iron-sulfides from active and inactive chimneys in deep-sea environments.

View Article and Find Full Text PDF

High iron and eutrophic conditions are reported as environmental factors leading to accelerated low-water corrosion, an enhanced form of near-shore microbial induced corrosion. To explore this hypothesis, we deployed flow-through colonization systems in laboratory-based aquarium tanks under a continuous flow of surface seawater from Santa Catalina Island, CA, USA, for periods of 2 and 6 months. Substrates consisted of mild steel - a major constituent of maritime infrastructure - and the naturally occurring iron sulfide mineral pyrite.

View Article and Find Full Text PDF

The main objective of this study was to investigate the dissolution kinetics of pyrite, pyrrhotite, and chalcopyrite. Crushed minerals were reacted with Acidithiobacillus ferrooxidans (25 °C). The kinetics of dissolution was investigated by monitoring pH and Fe(2+) and Fe(3+) ion concentrations in the leaching solutions.

View Article and Find Full Text PDF

Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches.

View Article and Find Full Text PDF

Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program.

View Article and Find Full Text PDF

To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion.

View Article and Find Full Text PDF

Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe-mineral interactions can influence alteration reactions at the rock-water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C) hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on the seafloor rocks than in surrounding seawater.

View Article and Find Full Text PDF

The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N).

View Article and Find Full Text PDF

The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere.

View Article and Find Full Text PDF

Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides.

View Article and Find Full Text PDF

A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 μm wide and 1-3 μm long, that occurred singly and in chains.

View Article and Find Full Text PDF

Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center.

View Article and Find Full Text PDF

Neutrophilic, bacterial iron-oxidation remains one of the least understood energy-generating biological reactions to date. One of the reasons it remains under-studied is because there are inherent problems with working with iron-oxidizing bacteria (FeOB), including low biomass yields and interference from the iron oxides in the samples. In an effort to circumvent the problem of low biomass, a new large batch culturing technique was developed.

View Article and Find Full Text PDF

Seafloor basalts are widely distributed and host diverse prokaryotic communities, but no data exist concerning the metabolic rates of the resident microbial communities. We present here potential extracellular enzyme activities of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) measured on basalt samples from different locations on Loihi Seamount, HI, coupled with analysis of prokaryotic biomass and pyrosequencing of the bacterial 16S rRNA gene. The community maximum potential enzyme activity (Vmax) of LAP ranged from 0.

View Article and Find Full Text PDF

Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass; yet, empirical analysis of reaction rates in basaltic crust is lacking. Here we report the first assessment of oxygen consumption in young (~8 Ma) and cool (<25 °C) basaltic crust, which we calculate from modelling dissolved oxygen and strontium pore water gradients in basal sediments collected during Integrated Ocean Drilling Program Expedition 336 to 'North Pond' on the western flank of the Mid-Atlantic Ridge. Dissolved oxygen is completely consumed within the upper to middle section of the sediment column, with an increase in concentration towards the sediment-basement interface, indicating an upward supply from oxic fluids circulating within the crust.

View Article and Find Full Text PDF

The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field.

View Article and Find Full Text PDF

Zetaproteobacteria are among the most prevalent Fe(II)-oxidizing bacteria (FeOB) at deep-sea hydrothermal vents; however, knowledge about their environmental significance is limited. We provide metagenomic insights into an iron mat at the Lō´ihi Seamount, Hawai´l, revealing novel genomic information of locally dominant Zetaproteobacteria lineages. These lineages were previously estimated to account for ~13% of all local Zetaproteobacteria based on 16S clone library data.

View Article and Find Full Text PDF

Extensive mats of Fe oxyhydroxides and associated Fe-oxidizing microbial organisms form in diverse geochemical settings - freshwater seeps to deep-sea vents - where ever opposing Fe(II)-oxygen gradients prevail. The mineralogy, reactivity, and structural transformations of Fe oxyhydroxides precipitated from submarine hydrothermal fluids within microbial mats remains elusive in active and fossil systems. In response, a study of Fe microbial mat formation at the Loihi Seamount was conducted to describe the physical and chemical characteristics of Fe-phases using extended X-ray absorption fine structure spectroscopy, powder X-ray diffraction, synchrotron radiation X-ray total scattering, low-temperature magnetic measurements, and Mössbauer spectroscopy.

View Article and Find Full Text PDF

We discuss ridge flank environments in the ocean crust as habitats for subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. We describe the nature of selected ridge flank crustal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces.

View Article and Find Full Text PDF

Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA.

View Article and Find Full Text PDF

Hydrothermal chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. Active, hot, venting sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides--structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive hydrothermal sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from venting to nonventing (inactive) regimes.

View Article and Find Full Text PDF

Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell.

View Article and Find Full Text PDF

Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging.

View Article and Find Full Text PDF

The majority of life on Earth--notably, microbial life--occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean-the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.

View Article and Find Full Text PDF