Publications by authors named "Katrina J Carter"

Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF.

View Article and Find Full Text PDF

Animal data indicate that insulin triggers a robust nitric oxide synthase (NOS)-mediated dilation in cerebral arteries similar to the peripheral tissue vasodilation observed in healthy adults. Insulin's role in regulating cerebral blood flow (CBF) in humans remains unclear but may be important for understanding the links between insulin resistance, diminished CBF, and poor brain health outcomes. We tested the hypothesis that an oral glucose challenge (oral glucose tolerance test, OGTT), which increases systemic insulin and glucose, would acutely increase CBF in healthy adults due to NOS-mediated vasodilation, and that changes in CBF would be greater in anterior regions where NOS expression or activity may be greater.

View Article and Find Full Text PDF

Ninety-million Americans suffer metabolic syndrome (MetSyn), increasing the risk of diabetes and poor brain outcomes, including neuropathology linked to lower cerebral blood flow (CBF), predominantly in anterior regions. We tested the hypothesis that total and regional CBF is lower in MetSyn more so in the anterior brain and explored three potential mechanisms. Thirty-four controls (25 ± 5 yr) and 19 MetSyn (30 ± 9 yr), with no history of cardiovascular disease/medications, underwent four-dimensional flow magnetic resonance imaging (MRI) to quantify macrovascular CBF, whereas arterial spin labeling quantified brain perfusion in a subset ( = 38/53).

View Article and Find Full Text PDF

Central adiposity is associated with greater sympathetic support of blood pressure. β-adrenergic receptors (β-AR) buffer sympathetically mediated vasoconstriction and β-AR-mediated vasodilation is attenuated in preclinical models of obesity. With this information, we hypothesized β-AR vasodilation would be lower in obese compared with normal weight adults.

View Article and Find Full Text PDF

The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation.

View Article and Find Full Text PDF