Introduction: Crop yields in food and fibre production systems throughout the world are significantly limited by soil water deficits. Identifying water conservation mechanisms within existing genotypes is pivotal in developing varieties with improved performance in water-limited conditions. The objective of this study was to screen Australian germplasm for variability in the transpiration response to progressive soil drying using a glasshouse dry-down experiment.
View Article and Find Full Text PDFThe Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD).
View Article and Find Full Text PDFMore frequent droughts and an increased pressure on water resources, combined with social licence to operate, will inevitably decrease water resources available for fully irrigated cotton production. Therefore, the long-term future of the cotton industry will require more drought tolerant varieties that can perform well when grown in rainfed cropping regions often exposed to intermittent drought. A trait that limits transpiration (TR) under an increased vapour pressure deficit (VPD) may increase crop yield in drier atmospheric conditions and potentially conserve soil water to support crop growth later in the growing season.
View Article and Find Full Text PDFChanges in atmospheric [CO2], temperature and precipitation under projected climate change scenarios may have significant impacts on the physiology and yield of cotton. Understanding the implications of integrated environmental impacts on cotton is critical for developing cotton systems that are resilient to stresses induced by climate change. The objective of this study was to quantify the physiological and growth capacity of two cotton cultivars under current and future climate regimes.
View Article and Find Full Text PDFAlterations in climate factors such as rising CO2 concentration ([CO2]), warming and reduced precipitation may have significant impacts on plant physiology and growth. This research investigated the interactive effects of elevated [CO2], warming and soil water deficit on biomass production, leaf-level physiological responses and whole-plant water use efficiency (WUEP) in cotton (Gossypium hirsutum L.).
View Article and Find Full Text PDF