Publications by authors named "Katrina H Jensen"

In this issue of , Sytniczuk, Kajetanowicz, and Grela report sterically tuned Cyclic(Alkyl)(Amino)Carbene (CAAC) ligands to protect the requisite Ru-methylidene ([Ru]=CH) intermediate present during ethenolysis of renewable fatty acid methyl esters (FAME). Surprising structural characteristics of the Ru-CAAC complexes resulted in TON up to 740,000 and sub-ppm catalyst loadings.

View Article and Find Full Text PDF

Despite its relative simplicity, ethylene is an interesting molecule with wide-ranging impact in modern chemistry and biology. Stemming from ethylene's role as a critical plant hormone, there has been significant effort to develop selective and sensitive molecular sensors for ethylene. Late transition metal complexes have played an important role in detection strategies due to ethylene's lack of structural complexity and limited reactivity.

View Article and Find Full Text PDF

Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown.

View Article and Find Full Text PDF

A palladium-catalyzed enantio- and diastereoselective synthesis of pyrrolidine derivatives is described. Initial intramolecular nucleopalladation of the tethered protected amine forms the pyrrolidine moiety and a quinone methide intermediate. A second nucleophile adds intermolecularly to afford diverse products in high enantio- and diastereoselectivity.

View Article and Find Full Text PDF

The mechanism of an enantioselective palladium-catalyzed alkene difunctionalization reaction has been investigated. Kinetic analysis provides evidence of turnover-limiting attack of a proposed quinone methide intermediate with MeOH and suggests that copper is involved in productive product formation, not just catalyst turnover. Through examination of substrate electronic effects, a Jaffé relationship was observed correlating rate to electronic perturbation at two positions of the substrate.

View Article and Find Full Text PDF

A modular catalyst structure was applied to evaluate the effects of catalyst acidity in a hydrogen bond-catalyzed hetero Diels-Alder reaction. Linear free energy relationships between catalyst acidity and both rate and enantioselectivity were observed, where greater catalyst acidity leads to increased activity and enantioselectivity. A relationship between reactant electronic nature and rate was also observed, although there is no such correlation to enantioselectivity, indicating the system is under catalyst control.

View Article and Find Full Text PDF

A sequential intramolecular-intermolecular enantioselective alkene difunctionalization reaction has been developed which is thought to proceed through Pd-catalyzed quinone methide formation. The synthesis of new chiral heterocyclic compounds with adjacent chiral centers is achieved in enantiomeric ratios up to 99:1 and diastereomeric ratios up to 10:1.

View Article and Find Full Text PDF

Alkene difunctionalization, the addition of two functional groups across a double bond, exemplifies a class of reactions with significant synthetic potential. This emerging area examines recent developments of palladium-catalyzed difunctionalization reactions, with a focus on mechanistic strategies that allow for functionalization of a common palladium alkyl intermediate.

View Article and Find Full Text PDF