Neuropsychopharmacology
December 2024
The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPe) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTA) cells projecting to the dorsomedial striatum (DMS).
View Article and Find Full Text PDFThe globus pallidus externus (GPe) is a central component of the basal ganglia circuit, receiving strong input from the indirect pathway and regulating a variety of functions, including locomotor output and habit formation. We recently showed that it also acts as a gatekeeper of cocaine-induced behavioral plasticity, as inhibition of parvalbumin-positive cells in the GPe (GPe ) prevents the development of cocaine-induced reward and sensitization. However, the molecular and circuit mechanisms underlying this function are unknown.
View Article and Find Full Text PDFAnalysis of system-wide cellular communication changes in Alzheimer's disease (AD) has recently been enabled by single nucleus RNA sequencing (snRNA-seq) and new computational methods. Here, we combined these to analyze data from postmortem human tissue from the entorhinal cortex of AD patients and compared our findings to those from multiomic data from the 5xFAD amyloidogenic mouse model at two different time points. Using the cellular communication inference tool CellChat we found that disease-related changes were largely related to neuronal excitability as well as synaptic communication, with specific signaling pathways including BMP, EGF, and EPHA, and relatively poor conservation of glial-related changes during disease.
View Article and Find Full Text PDFUse of one drug of abuse typically influences the behavioral response to other drugs, either administered at the same time or a subsequent time point. The nature of the drugs being used, as well as the timing and dosing, also influence how these drugs interact. Here, we tested the effects of adolescent THC exposure on the development of morphine-induced behavioral adaptations following repeated morphine exposure during adulthood.
View Article and Find Full Text PDFAlthough midbrain dopamine (DA) circuits are central to motivated behaviors, our knowledge of how experience modifies these circuits to facilitate subsequent behavioral adaptations is limited. Here we demonstrate the selective role of a ventral tegmental area DA projection to the amygdala (VTA→amygdala) for cocaine-induced anxiety but not cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach reveals a persistent elevation in spontaneous and task-related activity of inhibitory GABAergic cells from the bed nucleus of the stria terminalis (BNST) and downstream VTA→amygdala cells that can be detected even after a single cocaine exposure.
View Article and Find Full Text PDFObjective: Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD.
View Article and Find Full Text PDF