Publications by authors named "Katrina Bakken"

ATM inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk for normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure.

View Article and Find Full Text PDF

Glioblastoma (GBM) remains one of the most therapy-resistant malignancies with frequent local failures despite aggressive surgery, chemotherapy, and ionizing radiation (IR). Small molecule inhibitors of DNA-dependent protein kinase (DNA-PKi's) are potent radiosensitizers currently in clinical trials. Determining which patients may benefit from radiosensitization with DNA-PKi's is critical to avoid unnecessary increased risk of normal tissue toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a severe brain cancer characterized by infiltrative tumor cells that evade treatment due to a protective blood-brain barrier, resulting in poor patient outcomes despite aggressive therapies like radiation and chemotherapy.* -
  • The study investigates a new drug called elimusertib, an ATR kinase inhibitor, which aims to enhance the effectiveness of DNA-damaging treatments such as temozolomide; however, it showed strong lab results but did not improve outcomes in live mice models.* -
  • Findings reveal that elimusertib is quickly removed from the bloodstream and struggles to penetrate the brain effectively, largely due to barriers like P-glycoprotein at the blood-brain barrier, suggesting challenges for
View Article and Find Full Text PDF
Article Synopsis
  • Antibody-drug conjugates (ADCs) are effective targeted therapies for solid cancers, and this study focuses on the efficacy of EGFR-targeted ADCs for treating EGFR-amplified glioblastoma (GBM).
  • The study compares two ADCs, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), for their effectiveness and toxicity using patient-derived models and nontumor-bearing mice through a delivery method called convection-enhanced delivery (CED).
  • Results showed that CED significantly increased survival rates in GBM models, but ABBV-221 caused more neuronal toxicity compared to Depatux-M, raising concerns about the stability
View Article and Find Full Text PDF

ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of mutation status in a panel of wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs).

View Article and Find Full Text PDF

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27).

View Article and Find Full Text PDF

Background: Although the epidermal growth factor receptor (EGFR) is a frequent oncogenic driver in glioblastoma (GBM), efforts to therapeutically target this protein have been largely unsuccessful. The present preclinical study evaluated the novel EGFR inhibitor WSD-0922.

Methods: We employed flank and orthotopic patient-derived xenograft models to characterize WSD-0922 and compare its efficacy to erlotinib, a potent EGFR inhibitor that failed to provide benefit for GBM patients.

View Article and Find Full Text PDF

Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM.

Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated and .

View Article and Find Full Text PDF

Background: RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM).

Methods: shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX).

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an incurable disease with few approved therapeutic interventions. Radiation therapy (RT) and temozolomide (TMZ) remain the standards of care. The efficacy and optimal deployment schedule of the orally bioavailable small-molecule tumor checkpoint controller lisavanbulin alone, and in combination with, standards of care were assessed using a panel of IDH-wildtype GBM patient-derived xenografts.

View Article and Find Full Text PDF

Background: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important.

Methods: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M.

View Article and Find Full Text PDF

Human tissue samples commonly preserved as formalin-fixed paraffin-embedded (FFPE) tissues after diagnostic or surgical procedures in the clinic represent an invaluable source of clinical specimens for in-depth characterization of signaling networks to assess therapeutic options. Tyrosine phosphorylation (pTyr) plays a fundamental role in cellular processes and is commonly dysregulated in cancer but has not been studied to date in FFPE samples. In addition, pTyr analysis that may otherwise inform therapeutic interventions for patients has been limited by the requirement for large amounts of frozen tissue.

View Article and Find Full Text PDF

Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug-tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.

View Article and Find Full Text PDF

Poly ADP-ribose polymerase (PARP) inhibitors, including talazoparib, potentiate temozolomide efficacy in multiple tumor types; however, talazoparib-mediated sensitization has not been evaluated in orthotopic glioblastoma (GBM) models. This study evaluates talazoparib ± temozolomide in clinically relevant GBM models. Talazoparib at 1-3 nmol/L sensitized T98G, U251, and GBM12 cells to temozolomide, and enhanced DNA damage signaling and G-M arrest cyclical therapy with talazoparib (0.

View Article and Find Full Text PDF

This study investigated how differences in drug distribution and free fraction at different tumor and tissue sites influence the efficacy of the multikinase inhibitor ponatinib in a patient-derived xenograft model of glioblastoma (GBM). Efficacy studies in GBM6 flank (heterotopic) and intracranial (orthotopic) models showed that ponatinib is effective in the flank but not in the intracranial model, despite a relatively high brain-to-plasma ratio. In vitro binding studies indicated that flank tumor had a higher free (unbound) drug fraction than normal brain.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry.

View Article and Find Full Text PDF

Background: Sensitizing effects of poly-ADP-ribose polymerase inhibitors have been studied in several preclinical models, but a clear understanding of predictive biomarkers is lacking. In this study, in vivo efficacy of veliparib combined with temozolomide (TMZ) was evaluated in a large panel of glioblastoma multiforme (GBM) patient-derived xenografts (PDX) and potential biomarkers were analyzed.

Methods: The efficacy of TMZ alone vs TMZ/veliparib was compared in a panel of 28 GBM PDX lines grown as orthotopic xenografts (8-10 mice per group); all tests of statistical significance were two-sided.

View Article and Find Full Text PDF

6-Acetyl-8-cyclopentyl-5-methyl-2-([5-(piperazin-1-yl)pyridin-2-yl]amino)pyrido(2,3-d)pyrimidin-7(8H)-one [palbociclib (PD-0332991)] is a cyclin-dependent kinase 4/6 inhibitor approved for the treatment of metastatic breast cancer and is currently undergoing clinical trials for many solid tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and has limited treatment options. The cyclin-dependent kinase 4/6 pathway is commonly dysregulated in GBM and is a promising target in treating this devastating disease.

View Article and Find Full Text PDF

Purpose: Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in glioblastoma multiforme (GBM) xenograft models alone and in combination with radiation and/or temozolomide.

Experimental Design: In vitro MK-1775 efficacy alone and in combination with temozolomide, and the impact on DNA damage, was analyzed by Western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts.

View Article and Find Full Text PDF

Purpose: Effective sensitizing strategies potentially can extend the benefit of temozolomide (TMZ) therapy in patients with glioblastoma (GBM). We previously demonstrated that robust TMZ-sensitizing effects of the [poly (ADP-ribose) polymerase] (PARP) inhibitor veliparib (ABT-888) are restricted to TMZ-sensitive GBM xenografts. The focus of this study is to provide an understanding for the differential sensitization in paired TMZ-sensitive and -resistant GBM models.

View Article and Find Full Text PDF