Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury.
View Article and Find Full Text PDFBackground: Fetal alcohol spectrum disorders (FASD), a group of prevalent conditions resulting from prenatal alcohol exposure, affect the maturation of cerebral white matter as first identified with neuroimaging. However, traditional methods are unable to track subtle microstructural alterations to white matter. This preliminary study uses a highly sensitive and clinically translatable magnetic resonance elastography (MRE) protocol to assess brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD.
View Article and Find Full Text PDFBackground: Fetal Alcohol Spectrum Disorders (FASD) encompass a group of highly prevalent conditions resulting from prenatal alcohol exposure. Alcohol exposure during the third trimester of pregnancy overlapping with the brain growth spurt is detrimental to white matter growth and myelination, particularly in the corpus callosum, ultimately affecting tissue integrity in adolescence. Traditional neuroimaging techniques have been essential for assessing neurodevelopment in affected youth; however, these methods are limited in their capacity to track subtle microstructural alterations to white matter, thus restricting their effectiveness in monitoring therapeutic intervention.
View Article and Find Full Text PDFA total of 1 in 20 infants born annually are exposed to alcohol prenatally, which disrupts neurodevelopment and results in several disorders categorized under the umbrella term Fetal Alcohol Spectrum Disorders (FASD). Children and adolescents affected by FASD exhibit delayed maturation of cerebral white matter, which contributes to deficits in executive function, visuospatial processing, sensory integration, and interhemispheric communication. Research using animal models of FASD have uncovered that oligoglia proliferation, differentiation, and survival are vulnerable to alcohol teratogenesis in the male brain due in part to the activation of the neuroimmune system during gestation and infancy.
View Article and Find Full Text PDFEarly-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews.
View Article and Find Full Text PDFBackground: Up to 1 in 5 infants in the United States are exposed to alcohol prenatally, resulting in neurodevelopmental deficits categorized as fetal alcohol spectrum disorders (FASD). Choline supplementation ameliorates some deficits, suggesting that alcohol exposure (AE) perturbs cholinergic neurotransmission and development. Behavioral interventions, which upregulate cholinergic neurotransmission, rescue cognitive deficits in rodent models of FASD.
View Article and Find Full Text PDFThe thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior.
View Article and Find Full Text PDF