Placental-derived products have been used since the early 1900s for wound applications and have shown clinical utility in supporting wound healing. A hypothermically stored amniotic membrane (HSAM) was developed using a proprietary process to allow for the retention of the extracellular matrix (ECM), viable cells, and key proteins. To evaluate its utility, we characterized the HSAM and compared it to a native unprocessed amniotic membrane (uAM) and a dehydrated amniotic membrane (dAM), as well as assessing the functionality of the HSAM as a scaffold to promote cell growth.
View Article and Find Full Text PDFPlacental-derived allografts have been of interest as a potential nonsurgical treatment to reduce pain and improve function in knee osteoarthritis (OA). The purpose of this study was to evaluate the effect of single and repeat injection of amniotic suspension allograft (ASA) on pain, function, and cytokine levels using a destabilization of the medial meniscus (DMM) rat model of OA. Post-DMM surgery, animals were treated with a single injection of either ASA, vehicle, or triamcinolone, or repeated injection of either ASA or vehicle.
View Article and Find Full Text PDFPlacental membranes have been widely studied and used clinically for wound care applications, but there is limited published information on the benefits of using the chorion membrane. The chorion membrane represents a promising source of placental-derived tissue to support wound healing, with its native composition of extracellular matrix (ECM) proteins and key regulatory proteins. This study examined the impact of hypothermic storage on the structure of chorion membrane, ECM content, and response to degradation in vitro.
View Article and Find Full Text PDFThe role of the unfolded protein response (UPR) in plasma cells (PC) and their malignant multiple myeloma (MM) counterparts is a well described area of research. The importance of autophagy in these cells, as well as the interplay between autophagy and the UPR system, has also been well studied. In this review, we will discuss the relationship between these two cellular responses and how they can be utilized in MM to account for the high levels of monoclonal immunoglobulin (Ig) protein synthesis that is characteristic of this disease.
View Article and Find Full Text PDFMultiple myeloma (MM) is a deadly, incurable malignancy in which antibody-secreting plasma cells (PCs) become neoplastic. Previous studies have shown that the PC niche plays a role cancer progression. Bone marrow (BM) cores from MM and a premalignant condition known as monoclonal gammopathy of unknown significance (MGUS) patients were analyzed with confocal and transmission electron microscopy.
View Article and Find Full Text PDFBackground: Biomedical devices are implanted into mammalian soft tissues to improve, monitor, or restore form or function. The utility of these implants is limited by the subsequent foreign body response (FBR), beginning with inflammation and terminating in a collagen envelope around the device, known as the capsule. This capsule then can contract and distort the shape of the device or limit its effectiveness in interacting with the surrounding host tissues.
View Article and Find Full Text PDFCollagen hydrogels have been used ubiquitously as engineering biomaterials with a biphasic network of fibrillar collagen and aqueous-filled voids that contribute to a complex, compressible, and nonlinear mechanical behavior - not well captured within the infinitesimal strain theory. In this study, type-I collagen, processed from a bovine corium, was fabricated into disks at 2, 3, and 4% (w/w) and exposed to 0, 10, 10, and 10 microjoules of ultraviolet light or enzymatic degradation via matrix metalloproteinase-2. Fully hydrated gels were subjected to unconfined, aqueous, compression testing with experimental data modeled within a continuum mechanics framework by employing the uncommon Blatz-Ko material model for porous elastic materials and a nonlinear form of the Poisson's ratio.
View Article and Find Full Text PDFVascular stenosis, the abnormal narrowing of blood vessels, arises from defective developmental processes or atherosclerosis-related adult pathologies. Stenosis triggers a series of adaptive cellular responses that induces adverse remodeling, which can progress to partial or complete vessel occlusion with numerous fatal outcomes. Despite its severity, the cellular interactions and biophysical cues that regulate this pathological progression are poorly understood.
View Article and Find Full Text PDF