Publications by authors named "Katrin Weise"

Freshwater organisms are suitable models to study the fate of environmental pollutants. Due to their versatile and everyday use, many environmental pollutants such as triclocarban (TCC) or multi-walled carbon nanotubes (MWCNTs) enter environmental compartments very easily. TCC is known as a disinfectant and is declared as a highly aquatic toxicant.

View Article and Find Full Text PDF

Freshwater grazers are suitable organisms to investigate the fate of environmental pollutants, such as weathered multi-walled carbon nanotubes (wMWCNTs). One key process is the uptake of ingested materials into digestive or absorptive cells. To address this, we investigated the localization of wMWCNTs in the intestinal tracts of the mud snail Lymnaea stagnalis (L.

View Article and Find Full Text PDF

Multiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics.

View Article and Find Full Text PDF

Although the development and application of nanomaterials is a growing industry, little data is available on the ecotoxicological effects on aquatic organisms. Therefore, we set up a workflow to address the potential uptake of weathered multi-walled carbon nanotubes (wMWCNTs) by a model organism, the pulmonary mud snail Lymnaea stagnalis (L. stagnalis), which plays an important role in the food web.

View Article and Find Full Text PDF

The fusion of lipid membranes involves major changes of the membrane curvatures and is mediated by fusion proteins that bind to the lipid membranes. For a better understanding of the way fusion proteins steer this process, we have studied the interaction of two different viral fusion peptides, HA2-FP and TBEV-FP, with monoolein mesophases as a function of temperature and pressure at limited hydration. The fusion peptides are derived from the influenza virus hemagglutinin fusion protein (HA2-FP) and from the tick-borne encephalitis virus envelope glycoprotein E (TBEV-FP).

View Article and Find Full Text PDF

K-Ras4B is one of the most frequently mutated Ras isoforms in cancer. The signaling activity of K-Ras4B depends on its localization to the plasma membrane (PM), which is mainly mediated by its polybasic farnesylated C-terminus. On top of the constitutive cycles that maintain the PM enrichment of K-Ras4B, conditional phosphorylation at Ser181 located within this motif has been found to be involved in regulating K-Ras4B's cell distribution and signaling activity.

View Article and Find Full Text PDF

The partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into various membrane systems, ranging from single-component fluid bilayers, binary fluid mixtures, heterogeneous raft model membranes up to complex native-like lipid mixtures (GPMVs) in the absence and presence of integral membrane proteins have been explored in the last decade in a combined chemical-biological and biophysical approach. These studies have revealed pronounced isoform-specific differences regarding the lateral distribution in membranes and formation of protein-rich membrane domains. In this context, we will also discuss the effects of lipid head group structure and charge density on the partitioning behavior of the lipoproteins.

View Article and Find Full Text PDF

K-Ras4B is a membrane-bound small GTPase with a prominent role in cancer development. It contains a polybasic farnesylated C-terminus that is required for the correct localization and clustering of K-Ras4B in distinct membrane domains. PDEδ and the Ca(2+)-binding protein calmodulin (CaM) are known to function as potential binding partners for farnesylated Ras proteins.

View Article and Find Full Text PDF

In a combined chemical-biological and biophysical approach we explored the membrane partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into membrane systems of different complexity, ranging from one-component lipid bilayers and anionic binary and ternary heterogeneous membrane systems even up to partitioning studies on protein-free and protein-containing giant plasma membrane vesicles (GPMVs). To yield a pictorial view of the localization process, imaging using confocal laser scanning and atomic force microscopy was performed. The results reveal pronounced isoform-specific differences regarding the lateral distribution and formation of protein-rich membrane domains.

View Article and Find Full Text PDF

The small GTP-binding proteins Arl2 and Arl3, which are close homologs, share a number of interacting partners and act as displacement factors for prenylated and myristoylated cargo. Nevertheless, both proteins have distinct biological functions. Whereas Arl3 is considered a ciliary protein, Arl2 has been reported to be involved in tubulin folding, mitochondrial function, and Ras signaling.

View Article and Find Full Text PDF

Not only drastic temperature- but also pressure-induced perturbations of membrane organization pose a serious challenge to the biological cell. Although high hydrostatic pressure significantly influences the structural properties and thus functional characteristics of cells, this has not prevented life from invading the high pressure habitats of marine depths where pressures up to the 100 MPa level are encountered. Here, the temperature- and pressure-dependent structure and phase behavior of giant plasma membrane vesicles have been explored in the absence and presence of membrane proteins using a combined spectroscopic and microscopic approach.

View Article and Find Full Text PDF

Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of biological relevance--PSM/POPC/Chol, DPPC/POPC/Chol, and DPPC/DOPC/Chol--using 2H solid-state nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, and atomic force microscopy.

View Article and Find Full Text PDF

cis-[Pta2(H2O)2](2+) (with a = NH3 or a2 = en) and 2,2'-bipyrazine (2,2'-bpz) react in water preferentially to cyclic, triangular complexes of composition [{cis-Pta2(2,2'-bpz-N4,N4')}3](6+) (a = NH3, 1a; a2 = en, 1b). In their C3-symmetric conformation (all bridging pyrazine rings adopt cisoid orientations with respect to the central C2-C2' bond), 1a and 1b provide three pairs of N1,N1' donor sites each, which are capable of chelating additional (hetero)metal ions. The latter can in turn bridge to other N1,N1' sites in an intermolecular fashion or simply complete their coordination spheres with other ligands (water, anions).

View Article and Find Full Text PDF

In a combined chemical-biological and biophysical approach we explored the Gibbs (free) energy contributions to the membrane partitioning of lipidated proteins, and compared the theoretical predictions with recent experimental data on the membrane insertion of Ras proteins of various anchor systems into rationally designed model biomembrane systems. Various factors fostering or reducing the membrane partitioning properties are discussed, including hydrophobic effects, lipid chain mismatch, electrostatic interactions, membrane-mediated protein-protein interactions, and terms that account for line tension effects between coexisting lipid domains, lipid sorting, and changes in the lateral organization of the lipid bilayer system. From these data, it is apparent that two membrane anchoring motifs are needed to facilitate firm membrane binding.

View Article and Find Full Text PDF

Ras proteins are proto-oncogenes that function as molecular switches linking extracellular stimuli with an overlapping but distinctive range of biological outcomes. Although modulatable interactions between the membrane and the Ras C-terminal hypervariable region (HVR) harbouring the membrane anchor motifs enable signalling specificity to be determined by their location, it is becoming clear that the spatial orientation of different Ras proteins is also crucial for their functions. To reveal the orientation of the G-domain at membranes, we conducted an extensive study on different Ras isoforms anchored to model raft membranes.

View Article and Find Full Text PDF

K-Ras4B is a small GTPase whose selective membrane localization and clustering into microdomains are mediated by its polybasic farnesylated C-terminus. The importance of the subcellular distribution for the signaling activity of K-Ras4B became apparent from recent in vivo studies, showing that the delta subunit of cGMP phosphodiesterase (PDEδ), which possesses a hydrophobic prenyl-binding pocket, is able to function as a potential binding partner for farnesylated proteins, thereby leading to a modulation of the spatiotemporal organization of K-Ras. Even though PDEδ has been suggested to serve as a cytosolic carrier for Ras, the functional transport mechanism still remains largely elusive.

View Article and Find Full Text PDF

Fibrillar aggregates of the islet amyloid polypeptide (IAPP) and amyloid-β (Aβ) are known to deposit at pancreatic β-cells and neuronal cells and are associated with the cell degenerative diseases type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), respectively. Since IAPP is secreted by β-cells and a membrane-damaging effect of IAPP has been discussed as a reason for β-cell dysfunction and the development of T2DM, studies of the interaction of IAPP with the β-cell membrane are of high relevance for gaining a molecular-level understanding of the underlying mechanism. Recently, it has also been shown that patients suffering from T2DM exhibit an increased risk to develop AD and vice versa, and a molecular link between AD and T2DM has been suggested.

View Article and Find Full Text PDF

By using Fourier transform infrared (FT-IR) spectroscopy in combination with differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), ultrasound velocimetry, Laurdan fluorescence spectroscopy, fluorescence microscopy and atomic force microscopy (AFM), the temperature and pressure dependent phase behavior of the five-component anionic model raft lipid mixture DOPC/DOPG/DPPC/DPPG/cholesterol (20:5:45:5:25 mol%) was investigated. A temperature range from 5 to 65 °C and a pressure range up to 16 kbar were covered to establish the temperature-pressure phase diagram of this heterogeneous model biomembrane system. Incorporation of 10-20 mol% PG still leads to liquid-ordered (l(o))-liquid-disordered (l(d)) phase coexistence regions over a wide range of temperatures and pressures.

View Article and Find Full Text PDF

The K-Ras4B GTPase is a major oncoprotein whose signaling activity depends on its correct localization to negatively charged subcellular membranes and nanoclustering in membrane microdomains. Selective localization and clustering are mediated by the polybasic farnesylated C-terminus of K-Ras4B, but the mechanisms and molecular determinants involved are largely unknown. In a combined chemical biological and biophysical approach we investigated the partitioning of semisynthetic fully functional lipidated K-Ras4B proteins into heterogeneous anionic model membranes and membranes composed of viral lipid extracts.

View Article and Find Full Text PDF

Type II diabetes mellitus (T2DM) is associated with beta-cell failure, which correlates with the formation of pancreatic islet amyloid deposits. The human islet amyloid polypeptide (hIAPP) is the major component of islet amyloid and undergoes structural changes followed by self-association and pathological tissue deposition during aggregation in T2DM. There is clear evidence that the aggregation process is accelerated in the presence of particular lipid membranes.

View Article and Find Full Text PDF

In a combined chemical biological and biophysical approach, we studied the partitioning of differently fluorescent-labeled palmitoyl and/or farnesyl lipidated peptides, which represent membrane recognition model systems, as well as the full lipidated N-Ras protein into various model membrane systems including canonical model raft mixtures. To this end, two-photon fluorescence microscopy on giant unilamellar vesicles, complemented by tapping-mode atomic force microscopy (AFM) measurements, was carried out. The measurements were performed over a wide temperature range, ranging from 30 to 80 degrees C to cover different lipid phase states (solid-ordered (gel), fluid/gel, liquid-ordered/liquid-disordered, all-fluid).

View Article and Find Full Text PDF

The islet amyloid polypeptide (IAPP) or amylin is a pancreatic hormone and crucially involved in the pathogenesis of type-II diabetes mellitus (T2DM). Aggregation and amyloid formation of IAPP is considered as the primary culprit for pancreatic beta-cell loss in T2DM patients. In this study, first X-ray reflectivity (XRR) measurements on IAPP at lipid interfaces have been carried out, providing a molecular level characterization of the first steps of the lipid-induced fibrillation process of IAPP, which is initiated by lipid-induced nucleation, oligomerization, followed by detachment of larger IAPP aggregate structures from the lipid membrane, and terminated by the formation of mature fibrils in the bulk solution.

View Article and Find Full Text PDF