IEEE/ACM Trans Comput Biol Bioinform
April 2023
The encounter of large amounts of biological sequence data generated during the last decades and the algorithmic and hardware improvements have offered the possibility to apply machine learning techniques in bioinformatics. While the machine learning community is aware of the necessity to rigorously distinguish data transformation from data comparison and adopt reasonable combinations thereof, this awareness is often lacking in the field of comparative sequence analysis. With realization of the disadvantages of alignments for sequence comparison, some typical applications use more and more so-called alignment-free approaches.
View Article and Find Full Text PDFIn the present article we propose the application of variants of the mutual information function as characteristic fingerprints of biomolecular sequences for classification analysis. In particular, we consider the resolved mutual information functions based on Shannon-, Rényi-, and Tsallis-entropy. In combination with interpretable machine learning classifier models based on generalized learning vector quantization, a powerful methodology for sequence classification is achieved which allows substantial knowledge extraction in addition to the high classification ability due to the model-inherent robustness.
View Article and Find Full Text PDFUnlabelled: We present an approach to discriminate SARS-CoV-2 virus types based on their RNA sequence descriptions avoiding a sequence alignment. For that purpose, sequences are preprocessed by feature extraction and the resulting feature vectors are analyzed by prototype-based classification to remain interpretable. In particular, we propose to use variants of learning vector quantization (LVQ) based on dissimilarity measures for RNA sequence data.
View Article and Find Full Text PDFMotivation: Viruses are the most abundant biological entities and constitute a large reservoir of genetic diversity. In recent years, knowledge about them has increased significantly as a result of dynamic development in life sciences and rapid technological progress. This knowledge is scattered across various data repositories, making a comprehensive analysis of viral data difficult.
View Article and Find Full Text PDF