Publications by authors named "Katrin M Dyballa"

A series of diphosphoramidites has been synthetized with a piperazine, homopiperazine, and an acyclic 1,2-diamine unit in the backbone. New compounds were tested alongside related -acyl phosphoramidites as ligands in the Rh-catalyzed hydroformylation of -octenes to investigate their influence on the activity and regioselectivity. A subsequent study of their hydrolysis stability revealed that the most stable ligands induced the highest activity in the catalytic reaction.

View Article and Find Full Text PDF

The dehydrogenative cross-coupling of aniline derivatives to 2,2'-diaminobiaryls is reported. The oxidation is carried out electrochemically, which avoids the use of metals and reagents. A large variety of biphenyldiamines were thus prepared.

View Article and Find Full Text PDF

The anodic C-C cross-coupling reaction is a versatile synthetic approach to symmetric and non-symmetric biphenols and arylated phenols. We herein present a metal-free electrosynthetic method that provides access to symmetric and non-symmetric meta-terphenyl-2,2''-diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell.

View Article and Find Full Text PDF

The oxidative cross-coupling of aromatic substrates without the necessity of leaving groups or catalysts is described. The selective formation of partially protected nonsymmetric 2,2'-biphenols via electroorganic synthesis was accomplished with a high yield of isolated product. Since electric current is employed as the terminal oxidant, the reaction is reagent-free; no reagent waste is generated as only electrons are involved.

View Article and Find Full Text PDF

Biphenols are important structure motifs for ligand systems in organic catalysis and are therefore included in the category of so-called "privileged ligands". We have developed a new synthetic pathway to construct these structures by the use of selenium dioxide, a stable, powerful, and commercially available oxidizer. Our new, and easy to perform protocol gives rise to biphenols and diaryl selenides depending on the solvent employed.

View Article and Find Full Text PDF

Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions.

View Article and Find Full Text PDF

The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity.

View Article and Find Full Text PDF