Background: The mechanisms balancing proteostasis in glomerular cells are unknown. Mucolipidosis (ML) II and III are rare lysosomal storage disorders associated with mutations of the Golgi-resident GlcNAc-1-phosphotransferase, which generates mannose 6-phosphate residues on lysosomal enzymes. Without this modification, lysosomal enzymes are missorted to the extracellular space, which results in lysosomal dysfunction of many cell types.
View Article and Find Full Text PDFMost lysosomal enzymes require mannose 6-phosphate (M6P) residues for efficient receptor-mediated lysosomal targeting. Although the lack of M6P residues results in missorting and hypersecretion, selected lysosomal enzymes reach normal levels in lysosomes of various cell types, suggesting the existence of M6P-independent transport routes. Here, we quantify the lysosomal proteome in M6P-deficient mouse fibroblasts (PT(ki)) using Stable Isotope Labeling by Amino acids in Cell culture (SILAC)-based comparative mass spectrometry, and find unchanged amounts of 20% of lysosomal enzymes, including cathepsins D and B (Ctsd and Ctsb).
View Article and Find Full Text PDFAntigen processing and presentation and cytotoxic targeting depend on the activities of several lysosomal enzymes that require mannose 6-phosphate (M6P) sorting signals for efficient intracellular transport and localization. In this paper, we show that mice deficient in the formation of M6P residues exhibit significant loss of cathepsin proteases in B cells, leading to lysosomal dysfunction with accumulation of storage material, impaired antigen processing and presentation, and subsequent defects in B cell maturation and antibody production. The targeting of lysosomal and granular enzymes lacking M6P residues is less affected in dendritic cells and T cells and sufficient for maintenance of degradative and lytic functions.
View Article and Find Full Text PDFArylsulfatase G (ARSG) is a recently identified lysosomal sulfatase that was shown to be responsible for the degradation of 3-O-sulfated N-sulfoglucosamine residues of heparan sulfate glycosaminoglycans. Deficiency of ARSG leads to a new type of mucopolysaccharidosis, as described in a mouse model. Here, we provide a detailed molecular characterization of the endogenous murine enzyme.
View Article and Find Full Text PDFThe potent vasoconstrictor peptides, endothelin 1 (ET-1) and angiotensin II control adaptation of blood vessels to fluctuations of blood pressure. Previously we have shown that the circulating level of ET-1 is regulated through its proteolytic cleavage by secreted serine carboxypeptidase, cathepsin A (CathA). However, genetically-modified mouse expressing catalytically inactive CathA S190A mutant retained about 10-15% of the carboxypeptidase activity against ET-1 in its tissues suggesting a presence of parallel/redundant catabolic pathway(s).
View Article and Find Full Text PDFHereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex.
View Article and Find Full Text PDFGlucokinase acts as a glucose sensor in pancreatic beta cells. Its posttranslational regulation is important but not yet fully understood. Therefore, a pancreatic islet yeast two-hybrid library was produced and searched for glucokinase-binding proteins.
View Article and Find Full Text PDFMucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity.
View Article and Find Full Text PDFThe GlcNAc-1-phosphotransferase catalyzes the first step in the formation of mannose 6-phosphate (M6P) residues on lysosomal acid hydrolases that is essential for the efficient transport of newly synthesized lysosomal enzymes to lysosomes and the maintenance of lysosomal functions. Mutations in the GlcNAc-1-phosphotransferase cause the lysosomal storage disease mucolipidosis type II (MLII), resulting in mistargeting and hypersecretion of multiple lysosomal hydrolases and subsequent lysosomal accumulation of nondegraded material in several tissues. To describe cell-type specificity, compositional differences, and subcellular distribution of the stored material we performed an in-depth ultrastructural analysis of lysosomal storage in brain and retina of MLII knock-in mice using electron microscopy.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2013
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14.
View Article and Find Full Text PDFMucolipidosis II is a severe lysosomal storage disorder caused by defects in the α and β subunits of the hexameric N-acetylglucosamine-1-phosphotransferase complex essential for the formation of the mannose 6-phosphate targeting signal on lysosomal enzymes. Cleavage of the membrane-bound α/β-subunit precursor by an unknown protease is required for catalytic activity. Here we found that the α/β-subunit precursor is cleaved by the site-1 protease (S1P) that activates sterol regulatory element-binding proteins in response to cholesterol deprivation.
View Article and Find Full Text PDFGlcNAc-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate, a recognition marker essential for efficient transport of lysosomal hydrolases to lysosomes. The enzyme complex is composed of six subunits (α(2)β(2)γ(2)). The α- and β-subunits are catalytically active, whereas the function of the γ-subunit is still unclear.
View Article and Find Full Text PDFGlcNAc-1-phosphotransferase is a Golgi-resident 540-kDa complex of three subunits, alpha(2)beta(2)gamma(2), that catalyze the first step in the formation of the mannose 6-phosphate (M6P) recognition marker on lysosomal enzymes. Anti-M6P antibody analysis shows that human primary macrophages fail to generate M6P residues. Here we have explored the sorting and intracellular targeting of cathepsin D as a model, and the expression of the GlcNAc-1-phosphotransferase complex in macrophages.
View Article and Find Full Text PDFNewly synthesized soluble lysosomal hydrolases require mannose 6-phosphate (Man6P) residues on their oligosaccharides for their transport to lysosomes. The formation of Man6P residues is catalyzed by the GlcNAc-1-phosphotransferase, which is defective in the lysosomal storage disorders mucolipidosis type II (ML II) and ML III. Both hypersecretion and reduced intracellular level of lysosomal enzymes as well as direct sequencing of GlcNAc-1-phosphotransferase genes are important diagnostic markers for ML II and ML III.
View Article and Find Full Text PDFLysosomal hydrolases catalyze the degradation of a variety of macromolecules including proteins, carbohydrates, nucleic acids and lipids. The biogenesis of lysosomes or lysosome-related organelles requires a continuous substitution of soluble acid hydrolases and lysosomal membrane proteins. The targeting of lysosomal hydrolases depends on mannose 6-phosphate residues (M6P) that are recognized by specific receptors mediating their transport to an endosomal/prelysosomal compartment.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2009
The 66.3 kDa protein from mouse is a soluble protein of the lysosomal matrix. It is synthesized as a glycosylated 75 kDa preproprotein which is further processed into 28 and 40 kDa fragments.
View Article and Find Full Text PDFThe retinoid-inducible serine carboxypeptidase 1 (Scpep1; formerly RISC) is a lysosomal matrix protein that was initially identified in a screen for genes induced by retinoic acid. Recently, it has been spotlighted by several proteome analyses of the lysosomal compartment, but its cellular function and properties remain unknown to date. In this study, Scpep1 from mice was analysed with regard to its intracellular processing into a mature dimer consisting of a 35 kDa N-terminal fragment and a so far unknown 18 kDa C-terminal fragment and the glycosylation status of the mature Scpep1 fragment.
View Article and Find Full Text PDFRecently, we and others identified the 66.3-kDa protein as one of several putative novel lysosomal matrix proteins by analyzing mannose 6-phosphate receptors binding proteins [Kollmann K., Mutenda K.
View Article and Find Full Text PDFThe lysosomal matrix is estimated to contain about 50 different proteins. Most of the matrix proteins are acid hydrolases that depend on mannose 6-phosphate receptors (MPR) for targeting to lysosomes. Here, we describe a comprehensive proteome analysis of MPR-binding proteins from mouse.
View Article and Find Full Text PDF