Publications by authors named "Katrin J Svensson"

Secreted proteins play crucial roles in paracrine and endocrine signaling; however, identifying ligand-receptor interactions remains challenging. Here, we benchmarked AlphaFold2 (AF2) as a screening approach to identify extracellular ligands to single-pass transmembrane receptors. Key to the approach is the optimization of AF2 input and output for screening ligands against receptors to predict the most probable ligand-receptor interactions.

View Article and Find Full Text PDF

β-Hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve the interconversion of BHB and primary energy intermediates. Here, we identify a previously undescribed BHB secondary metabolic pathway via CNDP2-dependent enzymatic conjugation of BHB and free amino acids.

View Article and Find Full Text PDF

The intensive nutrient requirements needed to sustain T cell activation and proliferation, combined with competition for nutrients within the tumor microenvironment, raise the prospect that glucose availability may limit CAR-T cell function. Here, we seek to test the hypothesis that stable overexpression (OE) of the glucose transporter GLUT1 in primary human CAR-T cells would improve their function and antitumor potency. We observe that GLUT1OE in CAR-T cells increases glucose consumption, glycolysis, glycolytic reserve, and oxidative phosphorylation, and these effects are associated with decreased T cell exhaustion and increased Th differentiation.

View Article and Find Full Text PDF

β-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids.

View Article and Find Full Text PDF

The tight regulation of glucose and lipid metabolism is crucial for maintaining metabolic health. Dysregulation of these processes can lead to the development of metabolic diseases. Secreted factors, or hormones, play an essential role in the regulation of glucose and lipid metabolism, thus also playing an important role in the development of metabolic diseases such as type 2 diabetes and obesity.

View Article and Find Full Text PDF

There are multiple independent genetic signals at the () locus associated with type 2 diabetes risk, fasting glucose, ectopic fat, height, and bone mineral density. We have previously shown that loss of in pancreatic beta cells reduces insulin content and impairs islet cell development and function. However, RREB1 is a widely expressed transcription factor and the metabolic impact of RREB1 loss remains unknown.

View Article and Find Full Text PDF

Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites. One taurine metabolite is N-acetyltaurine.

View Article and Find Full Text PDF

Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans. In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites. One such taurine metabolite is N-acetyltaurine.

View Article and Find Full Text PDF

The endocrine system is a fundamental type of long-range cell-cell communication that is important for maintaining metabolism, physiology, and other aspects of organismal homeostasis. Endocrine signaling is mediated by diverse blood-borne ligands, also called hormones, including metabolites, lipids, steroids, peptides, and proteins. The size and structure of these hormones are fine-tuned to make them bioactive, responsive, and adaptable to meet the demands of changing environments.

View Article and Find Full Text PDF

Neuroblastoma is a leading cause of death in childhood cancer cases. Unlike adult malignancies, which typically develop from aged cells through accumulated damage and mutagenesis, neuroblastoma originates from neural crest cells with disrupted differentiation. This distinct feature provides novel therapeutic opportunities beyond conventional cytotoxic methods.

View Article and Find Full Text PDF

Peptide hormones and neuropeptides are signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we provide evidence for the endogenous presence of a sequence diverse class of blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease [NAFLD]) and metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis [NASH]) are leading chronic liver diseases, driving cirrhosis, hepatocellular carcinoma, and mortality. MASLD/MASH is associated with increased senescence proteins, including Activin A, and senolytics have been proposed as a therapeutic approach. To test the role of Activin A, we induced hepatic expression of Activin A in a murine MASLD/MASH model.

View Article and Find Full Text PDF

The identification of novel secreted factors is advancing at an unprecedented pace. However, there is a critical need to consolidate and integrate this knowledge to provide a framework of their diverse mechanisms, functional significance, and inter-relationships. Complicating this effort are challenges related to nonstandardized methods, discrepancies in sample handling, and inconsistencies in the annotation of unknown molecules.

View Article and Find Full Text PDF
Article Synopsis
  • - CROP-Seq merges CRISPR interference for gene silencing with single-cell RNA sequencing to explore adipogenesis and how fat cells develop.
  • - Researchers used human preadipocyte cells transduced with a library of sgRNAs, capturing individual cells at various stages of fat cell development for analysis.
  • - The study identified over 400 differentially expressed genes and validated the knockdown effects on genes that are critical for fat cell formation, suggesting this method can uncover new regulators linked to metabolic diseases.
View Article and Find Full Text PDF

Peptide hormones and neuropeptides are fundamental signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we demonstrate the endogenous presence of a sequence diverse class of orphan, blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence.

View Article and Find Full Text PDF

Systemic juvenile idiopathic arthritis is a chronic pediatric inflammatory disease of unknown etiology, characterized by fever, rash, hepatosplenomegaly, serositis, and arthritis. We hypothesized that intercellular communication, mediated by extracellular vesicles, contributes to systemic juvenile idiopathic arthritis pathogenesis and that the number and cellular sources of extracellular vesicles would differ between inactive and active states of systemic juvenile idiopathic arthritis and healthy controls. We evaluated plasma from healthy pediatric controls and patients with systemic juvenile idiopathic arthritis with active systemic flare or inactive disease.

View Article and Find Full Text PDF

There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice.

View Article and Find Full Text PDF

Secreted proteins play crucial roles in paracrine and endocrine signaling; however, identifying novel ligand-receptor interactions remains challenging. Here, we benchmarked AlphaFold as a screening approach to identify extracellular ligand-binding pairs using a structural library of single-pass transmembrane receptors. Key to the approach is the optimization of AlphaFold input and output for screening ligands against receptors to predict the most probable ligand-receptor interactions.

View Article and Find Full Text PDF

Here, we present an in vivo protocol for measuring basal and insulin-stimulated glucose uptake in tissues from mice. We describe steps for administering 2-deoxy-D-[1,2-H]glucose in the presence or absence of insulin via intraperitoneal injections. We then detail tissue collection, tissue processing to measure H counts on a scintillation counter, and data interpretation.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is a heterogeneous disease with unclear underlying molecular mechanisms. Here, we perform single-cell RNA sequencing of hepatocytes and hepatic non-parenchymal cells to map the lipid signatures in mice with non-alcoholic fatty liver disease (NAFLD). We uncover previously unidentified clusters of hepatocytes characterized by either high or low expression.

View Article and Find Full Text PDF

Pain signals are relayed to the brain via a nociceptive system, and in rare cases, this nociceptive system contains genetic variants that can limit the pain response. Here, we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and, further, whether we could target this region with a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1.

View Article and Find Full Text PDF

Human genetics has been instrumental in identification of genetic variants linked to type 2 diabetes. Recently a rare, putative loss-of-function mutation in the orphan G-protein coupled receptor 151 (GPR151) was found to be associated with lower odds ratio for type 2 diabetes, but the mechanism behind this association has remained elusive. Here we show that Gpr151 is a fasting- and glucagon-responsive hepatic gene which regulates hepatic gluconeogenesis.

View Article and Find Full Text PDF

Adipose tissue is a functional endocrine organ comprised of adipocytes and other cell types that are known to secrete a multiplicity of adipose-derived factors, including lipids and proteins. It is well established that adipose tissue and its secretome can impact systemic energy homeostasis. The endocrine and paracrine effects of adipose-derived factors have been widely studied over the last several decades.

View Article and Find Full Text PDF

The secreted protein isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin.

View Article and Find Full Text PDF

Background: Anthracycline-induced cardiomyopathy (AIC) is a significant source of morbidity and mortality in cancer survivors. The role of mesenchymal stem cells (MSCs) in treating AIC was evaluated in the SENECA trial, a Phase 1 National Heart, Lung, and Blood Institute-sponsored study, but the mechanisms underpinning efficacy in human tissue need clarification.

Objectives: The purpose of this study was to perform an in vitro clinical trial evaluating the efficacy and putative mechanisms of SENECA trial-specific MSCs in treating doxorubicin (DOX) injury, using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iCMs) generated from SENECA patients.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: