Acta Neuropathol Commun
April 2016
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, yet disease-modifying treatments do not currently exist. Rho-associated protein kinase (ROCK) was recently described as a novel neuroprotective target in PD. Since alpha-synuclein (α-Syn) aggregation is a major hallmark in the pathogenesis of PD, we aimed to evaluate the anti-aggregative potential of pharmacological ROCK inhibition using the isoquinoline derivative Fasudil, a small molecule inhibitor already approved for clinical use in humans.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 (LRRK2) gene are known as the most frequent cause of familial Parkinson's disease (PD), but are also present in sporadic cases. The G2019S-LRRK2 mutation is located in the kinase domain of the protein, and has consistently been reported to promote a gain of kinase function. Several proteins have been reported as LRRK2 substrates and/or interactors, suggesting possible pathways involved in neurodegeneration in PD.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2015
Aggregation and fibril formation of human alpha-Synuclein (αS) are neuropathological hallmarks of Parkinson's disease and other synucleinopathies. The molecular mechanisms of αS aggregation and fibrillogenesis are largely unknown. Several studies suggested a sequence of events from αS dimerization via oligomerization and pre-fibrillar aggregation to αS fibril formation.
View Article and Find Full Text PDFExtracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinson's Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system.
View Article and Find Full Text PDFCyclin-dependent kinase (Cdk) 5 is critical for central nervous system development and neuron-specific functions including neurite outgrowth as well as synaptic function and plasticity. Cdk5 activity requires association with one of the two regulatory subunits, called p35 and p39. p35 redistribution as well as misregulation of Cdk5 activity is followed by cell death in several models of neurodegeneration.
View Article and Find Full Text PDFProtein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD.
View Article and Find Full Text PDFWe describe two new transgenic mouse lines for studying pathological changes of Tau protein related to Alzheimer's disease. They are based on the regulatable expression of the four-repeat domain of human Tau carrying the FTDP17 (frontotemporal dementia and parkinsonism linked to chromosome 17) mutation deltaK280 (Tau(RD)/deltaK280), or the deltaK280 plus two proline mutations in the hexapeptide motifs (Tau(RD)/deltaK280/I277P/I308P). The deltaK280 mutation accelerates aggregation ("proaggregation mutant"), whereas the proline mutations inhibit Tau aggregation in vitro and in cell models ("antiaggregation mutant").
View Article and Find Full Text PDFNeurofibrillary lesions are characteristic for a group of human diseases, named tauopathies, which are characterized by prominent intracellular accumulations of abnormal filaments formed by the microtubule-associated protein Tau. The tauopathies are accompanied by abnormal changes in Tau protein, including pathological conformation, somatodendritic mislocalization, hyperphosphorylation, and aggregation, whose interdependence is not well understood. To address these issues we have created transgenic mouse lines in which different variants of full-length Tau are expressed in a regulatable fashion, allowing one to switch the expression on and off at defined time points.
View Article and Find Full Text PDF