Publications by authors named "Katrin Deinhardt"

Aging is the leading risk factor for Alzheimer's disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer's disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse.

View Article and Find Full Text PDF

During subarachnoid haemorrhage, a blood clot forms in the subarachnoid space releasing extracellular haemoglobin (Hb), which causes oxidative damage and cell death in surrounding tissues. High rates of disability and cognitive decline in SAH survivors are attributed to loss of neurons and functional connections during secondary brain injury. Haptoglobin sequesters Hb for clearance, but this scavenging system is overwhelmed after a haemorrhage.

View Article and Find Full Text PDF

In Alzheimer's disease, tau pathology is thought to spread via a prion-like manner along connected neuronal networks. For this to occur, the usually cytosolic tau protein must be secreted via an unconventional mechanism prior to uptake into the connected neuron. While secretion of healthy and pathological tau has been documented, it remains under-investigated whether this occurs via overlapping or distinct processes.

View Article and Find Full Text PDF

Cultured primary neurons are a well-established model for the study of neuronal function. Conventional stable isotope labeling with amino acids in cell culture (SILAC) requires nearly complete metabolic labeling of proteins and therefore is difficult to apply to cultured primary neurons, which do not divide in culture. In a multiplex SILAC strategy, two different sets of heavy amino acids are used for labeling cells for the different experimental conditions.

View Article and Find Full Text PDF

Background: Tauopathies are a group of neurodegenerative diseases associated with the accumulation of misfolded tau protein. The mechanisms underpinning tau-dependent proteinopathy remain to be elucidated. A protein quality control pathway within the endoplasmic reticulum, the unfolded protein response (UPR), has been suggested as a possible pathway modulating cellular responses in a range of neurodegenerative diseases, including those associated with misfolded cytosolic tau.

View Article and Find Full Text PDF

The deposition of misfolded, aggregated tau protein is a hallmark of several neurodegenerative diseases, collectively termed "tauopathies". Tau pathology spreads throughout the brain along connected pathways in a prion-like manner. The process of tau pathology propagation across circuits is a focus of intense research and has been investigated in human post-mortem brain and in mouse models of the diseases, in diverse cellular systems including primary neurons, and in cell free assays using purified recombinant tau protein.

View Article and Find Full Text PDF

RNA G-quadruplexes (G4s) are secondary structures proposed to function as regulators of post-transcriptional mRNA localisation and translation. G4s within some neuronal mRNAs are known to control distal localisation and local translation, contributing to distinct local proteomes that facilitate the synaptic remodelling attributed to normal cellular function. In this study, we characterise the G4 formation of a (GGN)13 repeat found within the 5' UTR of the potassium 2-pore domain leak channel Task3 mRNA.

View Article and Find Full Text PDF

Microscopy with extreme ultraviolet (EUV) light can provide many advantages over optical, hard x-ray or electron-based techniques. However, traditional EUV sources and optics have large disadvantages of scale and cost. Here, we demonstrate the use of a laboratory-scale, coherent EUV source to image biological samples-mouse hippocampal neurons-providing quantitative phase and amplitude transmission information with a lateral resolution of 80 nm and an axial sensitivity of ~1 nm.

View Article and Find Full Text PDF

The molecular processes underlying the aging-related decline in cognitive performance and memory observed in humans are poorly understood. Studies in rodents have shown a decrease in N-methyl-D-aspartate receptors (NMDARs) that contain the GluN2B subunit in aging synapses, and this decrease is correlated with impaired memory functions. However, the age-dependent contribution of GluN2B-containing receptors to synaptic transmission in human cortical synapses has not been previously studied.

View Article and Find Full Text PDF

Neurofibrillary tangles, formed of misfolded, hyperphosphorylated tau protein, are a pathological hallmark of several neurodegenerations, including Alzheimer's disease. Tau pathology spreads between neurons and propagates misfolding in a prion-like manner throughout connected neuronal circuits. Tauopathy is accompanied by significant neuronal death, but the relationships between initial tau misfolding, propagation across connected neurons and cytotoxicity remain unclear.

View Article and Find Full Text PDF

With an increasing awareness of mental health issues and neurological disorders, "understanding the brain" is one of the biggest current challenges in biological research. This has been recognised by both governments and funding agencies, and it includes the need to understand connectivity of brain regions and coordinated network activity, as well as cellular and molecular mechanisms at play. In this chapter, we will describe how we have taken advantage of different proteomic techniques to unravel molecular mechanisms underlying two modulators of neuronal function: Neurotrophins and antipsychotics.

View Article and Find Full Text PDF

Glutamate receptors of the N-methyl-D-aspartate (NMDA) family are coincident detectors of pre- and postsynaptic activity, allowing Ca influx into neurons. These properties are central to neurological disease mechanisms and are proposed to be the basis of associative learning and memory. In addition to the well-characterised canonical GluN2A NMDAR isoform, large-scale open reading frames in human tissues had suggested the expression of a primate-specific short GluN2A isoform referred to as GluN2A-S.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is commonly associated with a range of neurodegenerative diseases, and targeting UPR components has been suggested as a therapeutic strategy. The UPR surveys protein folding within the endoplasmic reticulum. However, many of the misfolded proteins that accumulate in neurodegeneration are localized so that they do not directly cause endoplasmic reticulum triggers that activate this pathway.

View Article and Find Full Text PDF

Directional connectivity is required to develop accurate in vitro models of the nervous system. This research investigated the interaction of murine neuronal outgrowths with asymmetric microstructured geometries to provide insights into the mechanisms governing unidirectional outgrowth bias. The structures were designed using edge-guidance and critical turning angle principles to study different prohibitive to permissive edge-guidance ratios.

View Article and Find Full Text PDF

The synaptic changes underlying the onset of cognitive impairment in Alzheimer's disease (AD) are poorly understood. In contrast to the well documented inhibition of long-term potentiation (LTP) in CA3-CA1 synapses by acute Aβ application in adult neurons from rodents, young amyloid precursor protein (APP) transgenic mouse models often, surprisingly, show normal LTP. This suggests that there may be important differences between mature-onset and developmental-onset APP expression/ Aβ accumulation and the ensuing synaptic and behavioural phenotype.

View Article and Find Full Text PDF

Neurofibrillary tangles, formed of hyperphosphorylated, misfolded tau accumulations, are a pathological hallmark of neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia. The neuroanatomical localisation of tau pathology in AD brains of different disease stages suggests that tau tangle pathology is spreading throughout the brain along connected neuronal circuits. Pathogenic tau can act as a prion-like seed, inducing the misfolding of native tau and leading to disease propagation throughout the brain.

View Article and Find Full Text PDF

Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach.

View Article and Find Full Text PDF

Rapamycin is a naturally occurring macrolide whose target is at the core of nutrient and stress regulation in a wide range of species. Despite well-established roles as an inhibitor of cap-dependent mRNA translation, relatively little is known about its effects on other modes of RNA processing. Here, we characterize the landscape of rapamycin-induced post-transcriptional gene regulation.

View Article and Find Full Text PDF

Unlabelled: The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination.

View Article and Find Full Text PDF

Cultured primary neurons are a well-established model for the study of neuronal function. Conventional stable isotope labeling with amino acids in cell culture (SILAC) requires nearly complete metabolic labeling of proteins and therefore is difficult to apply to cultured primary neurons, which do not divide in culture. Here we describe a protocol that utilizes a multiplex SILAC labeling strategy for primary cultured neurons.

View Article and Find Full Text PDF

Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry (IHC) and Western blotting.

View Article and Find Full Text PDF

With an increasing awareness of mental health issues and neurological disorders, "understanding the brain" is one of the biggest current challenges in biological research. This has been recognized by both governments and funding agencies, and includes the need to understand connectivity of brain regions and coordinated network activity, as well as cellular and molecular mechanisms at play. In this chapter, we will describe how we have taken advantage of different proteomic techniques to unravel molecular mechanisms underlying two modulators of neuronal function: Neurotrophins and antipsychotics.

View Article and Find Full Text PDF
Trk receptors.

Handb Exp Pharmacol

August 2014

The tropomyosin-related tyrosine kinase (Trk) receptors were initially described as a family of growth factor receptors required for neuronal survival. They have since been shown to influence many aspects of neuronal development and function, including differentiation, outgrowth, and synaptic plasticity. This chapter will give an overview on the biology of Trk receptors within the nervous system.

View Article and Find Full Text PDF

Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown.

View Article and Find Full Text PDF