Publications by authors named "Katrin Busch"

Memory B cells (MBCs) formed over the individual's lifetime constitute nearly half of the circulating B cell repertoire in humans. These pre-existing MBCs dominate recall responses to their cognate antigens, but how they respond to recognition of novel antigens is not well understood. Here, we tracked the origin and followed the differentiation paths of MBCs in the early anti-spike (S) response to mRNA vaccination in SARS-CoV-2-naive individuals on single-cell and monoclonal antibody levels.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate the immune system in development, and contribute to its maintenance under steady-state conditions. How stem and progenitor cells respond to increased demand for mature cells upon injury is a fundamental question of stem cell biology. Several studies of murine hematopoiesis have reported increased proliferation of HSCs in situ when exposed to inflammatory stimuli, which has been taken as a proxy for increased HSC differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Hematopoiesis is the process where the body makes more blood and immune cells when it's fighting infections or dealing with stress.
  • Scientists studied how certain mouse blood cells called hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) help in this process during a severe infection called polymicrobial sepsis.
  • They found that while HSCs increased in number and died off, they didn't change much in how they turned into other blood cells; instead, MPPs played a big role in quickly making more immune cells.
View Article and Find Full Text PDF

Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis.

View Article and Find Full Text PDF

Hematopoiesis serves as a paradigm for how homeostasis is maintained within hierarchically organized cell populations. However, important questions remain as to the contribution of hematopoietic stem cells (HSCs) toward maintaining steady state hematopoiesis. A number of in vivo lineage labeling and propagation studies have given rise to contradictory interpretations, leaving key properties of stem cell function unresolved.

View Article and Find Full Text PDF

Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages.

View Article and Find Full Text PDF

Lineage tracing reveals hematopoietic stem cell (HSC) fates, while single-cell RNA sequencing identifies snapshots of HSC transcriptomes. To obtain information on fate plus transcriptome in the same cell, we developed the PolyloxExpress allele, enabling Cre-recombinase-dependent RNA barcoding in situ. Linking fates to single HSC transcriptomes provided the information required to identify transcriptional signatures of HSC fates, which were not apparent in single-HSC transcriptomes alone.

View Article and Find Full Text PDF

Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved.

View Article and Find Full Text PDF

Microvascular endothelial cells (ECs) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular ECs instruct neighboring cells in their organ-specific vascular niches through angiocrine factors, which include secreted growth factors (angiokines), extracellular matrix molecules, and transmembrane proteins. However, the molecular regulators that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity are largely elusive.

View Article and Find Full Text PDF

Purpose Of Review: Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro manipulation and readout for potential.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) and downstream progenitors have long been studied based on phenotype, cell purification, proliferation, and transplantation into myeloablated recipients. These experiments, complemented by data on expression profiles, mouse mutants, and humans with hematopoietic defects, are the foundation for the current hematopoietic differentiation tree. However, there are fundamental gaps in our knowledge of the quantitative and qualitative operation of the HSC/progenitor system under physiological and pathological conditions in vivo.

View Article and Find Full Text PDF

Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2.

View Article and Find Full Text PDF

Haematopoietic stem cells (HSCs) are widely studied by HSC transplantation into immune- and blood-cell-depleted recipients. Single HSCs can rebuild the system after transplantation. Chromosomal marking, viral integration and barcoding of transplanted HSCs suggest that very low numbers of HSCs perpetuate a continuous stream of differentiating cells.

View Article and Find Full Text PDF

Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma.

View Article and Find Full Text PDF

Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear.

View Article and Find Full Text PDF

In attention-deficit/hyperactivity disorder (ADHD), a reduced phasic alerting response (event-related potential component P3 to cue stimuli) has been reported for different subtypes and task types in a series of studies. In order to get a refined picture of this attentional deficit, which is based on the analysis of averaged event-related potentials, we studied the distribution of single-trial cue-P3 amplitudes and the relation between the cue-P3 and the neural state (EEG spectral analysis) when expecting the stimulus. Brain electrical activity was recorded in children of different ADHD subtypes (combined type, predominantly inattentive) and typically developing children while conducting the attention network test.

View Article and Find Full Text PDF

Objective: In children with attention-deficit/hyperactivity disorder (ADHD), an increased theta/beta ratio in the resting EEG typically serves as a rationale to conduct theta/beta neurofeedback (NF) training. However, this finding is increasingly challenged. As NF may rather target an active than a passive state, we studied the EEG in a condition that requires attention.

View Article and Find Full Text PDF

Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors.

View Article and Find Full Text PDF

The cellular differentiation pathway originating from the bone marrow leading to early T lymphocytes remains poorly understood. The view that T cells branch off from a lymphoid-restricted pathway has recently been challenged by a model proposing a common progenitor for T cell and myeloid lineages. We generated interleukin-7 receptor alpha (Il7r) Cre recombinase knockin mice and traced lymphocyte development by visualizing the history of Il7r expression.

View Article and Find Full Text PDF

Recently we have identified the novel mitochondrial peptidase responsible for degrading presequences and other short unstructured peptides in mitochondria, the presequence peptidase, which we named PreP peptidasome. In the present study we have identified and characterized the human PreP homologue, hPreP, in brain mitochondria, and we show its capacity to degrade the amyloid beta-protein (Abeta). PreP belongs to the pitrilysin oligopeptidase family M16C containing an inverted zinc-binding motif.

View Article and Find Full Text PDF