Introduction: Alterations in cell-free DNA concentration (cfDNA) over time have been studied in diseased or injured patients or analyzed in athletes during exhaustive exercise. However, no fluctuations have been examined over a short time course in healthy humans at rest so far, wherefore the aim of this study was to examine individual variations at different time points within 75 min.
Methods: Serial blood drawing was performed in 14 healthy female volunteers at rest within 75 min.
Introduction: Cell-free DNA (cfDNA) elevations were remarked in the blood of trauma patients. Published increases refer to comparative values of a healthy control group, ignoring thereby inter- and intra-individual differences under normal conditions. The aim of this study was to quantify cfDNA in patients in the time course of a planned orthopedic surgery, which constitutes the advantage of obtaining individual pre- and post-trauma values for each patient.
View Article and Find Full Text PDFSterile single-use ultrafilters are used in dialysis for the preparation of the substitution fluid given to patients undergoing dialysis treatments with high convective fluid removal. The retention of pyrogenic agents by the ultrafilters is crucial to avoiding inflammatory responses. The performance of a new single-use ultrafilter (NUF) with a positively charged flat sheet membrane of relatively small membrane area and large pore size was compared to a reference ultrafilter (RUF) with a hollow fiber membrane.
View Article and Find Full Text PDFIntroduction: The mortality risk of dialysis patients is still elevated. Even though there is continuous improvement in the biocompatibility of dialysis devices and treatments, there is clinical evidence of a negative inflammatory impact. One dialysis-related risk factor to be considered in this regard may be the repeated blood exposure to foreign filter surfaces.
View Article and Find Full Text PDFSkeletal muscle cells have been established as significant producers of IL-6 during exercise. This IL-6 production is discussed as one possible mediator of the beneficial effects of physical activity on glucose and fatty acid metabolism. IL-6 itself could be the exercise-related factor that upregulates and maintains its own production.
View Article and Find Full Text PDFPrevious results indicate that enhanced glucose transporter (GLUT)1 expression mediates the deleterious effects of metabolic and hemodynamic perturbations leading to diabetic kidney disease. First screening for altered gene expression in GLUT1 overexpressing cells (GT1) by Affymetrix microarray analysis revealed upregulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) expression, which was verified by RT-PCR. Subsequently, IL-6 and VEGF protein production was more than 3-fold increased in the GT1 cells.
View Article and Find Full Text PDFThe exercise-induced interleukin (IL)-6 production and secretion within skeletal muscle fibers has raised the question of a putative tissue-specific function of IL-6 in the energy metabolism of the muscle during and after the exercise. In the present study, we followed the hypothesis that IL-6 signaling may directly interact with insulin receptor substrate (IRS)-1, a keystone in the insulin signaling cascade. We showed that IL-6 induces a rapid recruitment of IRS-1 to the IL-6 receptor complex in cultured skeletal muscle cells.
View Article and Find Full Text PDFThe Ser/Thr phosphorylation of insulin receptor substrate 1 (IRS) is one key mechanism to stimulate and/or attenuate insulin signal transduction. Using a phospho-specific polyclonal antibody directed against phosphorylated Ser(318) of IRS-1, we found a rapid and transient insulin-stimulated phosphorylation of Ser(318) in human and rodent skeletal muscle cell models and in muscle tissue of insulin-treated mice. None of the investigated insulin resistance-associated factors (e.
View Article and Find Full Text PDFThe 5'-flanking region of the human glutamine:fructose-6-phosphate amidotransferase (GFAT) gene was characterised as a functional active promoter and the GFAT gene contained multiple transcription start sites. A novel single nucleotide polymorphism identified at position -1412 (G to C) had a functional effect on promoter activity and EMSA revealed specific binding of nuclear proteins to this region.
View Article and Find Full Text PDFPrevious studies showed an insulin-"desensitizing" action of IL-6 on glycogen synthesis in hepatocytes. We recently found no inhibition of the proximal steps of the insulin signal cascade in human skeletal muscle cells. Because these data indicate a possible tissue-specific effect of IL-6, we investigated the influence of IL-6 on insulin-stimulated glycogen synthesis in these cells.
View Article and Find Full Text PDFIncreases in glutamine:fructose-6-phosphate aminotransferase (GFAT) protein levels directly activate flux through the hexosamine biosynthetic pathway. This pathway has been involved as a fuel sensor in energy metabolism and development of insulin resistance. We screened the 5'-flanking region of the human GFAT gene for polymorphisms and subsequently genotyped 412 nondiabetic, metabolically characterized Caucasians for the two single-nucleotide polymorphisms (SNP) at positions -913 (G/A) and -1412 (C/G) with rare allele frequencies of 42% and 16%, respectively.
View Article and Find Full Text PDFCirculating interleukin-6 (IL-6), insulin, and free fatty acid (FFA) concentrations are associated with impaired insulin action in obese and type 2 diabetic individuals. However, a causal relationship between elevated plasma FFAs and IL-6 has not been shown. Because skeletal muscle represents a major target of impaired insulin action, we studied whether FFAs may affect IL-6 expression in human myotubes.
View Article and Find Full Text PDFThe hyperglycemia-enhanced flux through the hexosamine biosynthetic pathway (HBP) has been implicated in the up-regulated gene expression of transforming growth factor-beta1 (TGF-beta1) in mesangial cells, thus leading to mesangial matrix expansion and diabetic glomerulosclerosis. Since the -1013 to -1002 region of the TGF-beta1 promoter shows high homology to glucose-response elements (GlRE) formerly described in genes involved in glucose metabolism, we studied the function of the GlRE in the high glucose-induced TGF-beta1 gene activation in mesangial cells. We found that high glucose concentrations enhanced the nuclear amount of upstream stimulatory factors (USF) and their binding to this sequence.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptor gamma activating compounds thiazolidinedione (TZD) have been shown to inhibit diabetes-induced glomerular transforming growth factor-beta1 (TGF-beta1) expression, thereby ameliorating diabetic nephropathy. Here we examined the hypothesis that TZDs block high glucose-induced TGF-beta1 gene activation by interaction with the activated protein kinase C-c-Fos-TGF-beta1 promoter cascade in mesangial cells. The TZD compounds troglitazone and rosiglitazone completely prevented the high glucose induction of both TGF-beta1 promoter activity and elevation in nuclear c-Fos protein levels.
View Article and Find Full Text PDFThe nutrient sensing capacity of the hexosamine biosynthetic pathway (HBP) has been implicated in the development of insulin resistance of skeletal muscle. To study the molecular mechanism of the free fatty acid (FFA)-induced activation of the HBP myotubes obtained from muscle biopsies of metabolically characterized, subjects were stimulated with different fatty acids for 20 h. Incubation with the saturated fatty acids palmitate and stearate (0.
View Article and Find Full Text PDFRecent experimental work indicates that the hyperglycemia-induced increase in mesangial matrix production, which is a hallmark in the development of diabetic nephropathy, is mediated by increased expression of GLUT1. Mesangial cells stably transfected with human GLUT1 mimic the effect of hyperglycemia on the production of the extracellular matrix proteins, particularly fibronectin, when cultured under normoglycemic conditions. Our investigation of the molecular mechanism of this effect has revealed that the enhanced fibronectin production was not mediated by the prosclerotic cytokine transforming growth factor (TGF)-beta1.
View Article and Find Full Text PDFHyperglycemia-induced overproduction of the prosclerotic cytokine transforming growth factor-beta1 (TGF-beta1) has been implicated in the pathogenesis of diabetic nephropathy. Because high glucose and phorbol esters (PMA) increase TGF-beta1 mRNA levels in mesangial cells, this study was designed to characterize these effects on the human TGF-beta1 promoter activity. With the use of luciferase reporter gene constructs containing TGF-beta1 5'-flanking sequence (from -453 to +11 bp) transfected into mesangial cells, it was found that 30 mM glucose induced a nearly twofold increase in TGF-beta1 promoter activity after 24 h of incubation in human and porcine mesangial cells.
View Article and Find Full Text PDF