Rationale Of The Trial: Although the use of engineered T cells in cancer immunotherapy has greatly advanced the treatment of hematological malignancies, reaching meaningful clinical responses in the treatment of solid tumors is still challenging. We investigated the safety and tolerability of IMA202 in a first-in-human, dose escalation basket trial in human leucocyte antigen A*02:01 positive patients with melanoma-associated antigen A1 (MAGEA1)-positive advanced solid tumors.
Trial Design: The 2+2 trial design was an algorithmic design based on a maximally acceptable dose-limiting toxicity (DLT) rate of 25% and the sample size was driven by the algorithmic design with a maximum of 16 patients.
IMA101 is an actively personalized, multi-targeted adoptive cell therapy (ACT), whereby autologous T cells are directed against multiple novel defined peptide-HLA (pHLA) cancer targets. HLA-A*02:01-positive patients with relapsed/refractory solid tumors expressing ≥1 of 8 predefined targets underwent leukapheresis. Endogenous T cells specific for up to 4 targets were primed and expanded in vitro.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is characterized by low numbers of glioma-infiltrating lymphocytes (GIL) with a dysfunctional phenotype. Whether this dysfunctional phenotype is fixed or can be reversed upon culturing is poorly understood. The aim of this study was to assess T cell receptor (TCR)-dynamics and -specificities as well as determinants of GIL expansion by sequencing-based technologies and functional assays to explore the use of GIL for cell therapy.
View Article and Find Full Text PDFPurpose: Immunotherapy for hepatocellular carcinoma (HCC) shows considerable promise in improving clinical outcomes. HepaVac-101 represents a single-arm, first-in-human phase I/II multicenter cancer vaccine trial for HCC (NCT03203005). It combines multipeptide antigens (IMA970A) with the TLR7/8/RIG I agonist CV8102.
View Article and Find Full Text PDFThe dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype: in isocitrate dehydrogenase (IDH)-mutant tumors, differentiation of infiltrating myeloid cells is blocked, resulting in an immature phenotype. In late-stage gliomas, monocyte-derived macrophages drive tolerogenic alignment of the microenvironment, thus preventing T cell response.
View Article and Find Full Text PDFBackground: Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T-cell responses can be generated.
View Article and Find Full Text PDFIntrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors.
View Article and Find Full Text PDF