Publications by authors named "Katrin Ahlbrecht"

Background: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear.

Methods: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration.

View Article and Find Full Text PDF

The morphometric analysis of lung structure using the principles of stereology has emerged as a powerful tool to describe the structural changes in lung architecture that accompany the development of lung disease that is experimentally modelled in adult mice. These stereological principles are now being applied to the study of the evolution of the lung architecture over the course of prenatal and postnatal lung development in mouse neonates and adolescents. The immature lung is structurally and functionally distinct from the adult lung, and has a smaller volume than does the adult lung.

View Article and Find Full Text PDF

Background And Purpose: Recruitment and involvement of bone-/blood-derived circulating fibrocytes (CF) in the promotion of fibrotic tissue remodelling processes have been shown. However, their direct contribution to pathological changes is not clear. The present study investigates the causal role of CF in the pathogenesis of pulmonary hypertension (PH).

View Article and Find Full Text PDF

Accurate estimation of the absolute number of a particular cell-type in whole organs is increasingly important in studies on organogenesis, and the remodelling and repair of diseased tissues. The unbiased estimation of the absolute number of cells in an organ is complicated, and design-based stereology remains the method of choice. This has led investigators to explore alternative approaches - such as flow cytometry - as a faster and less labour-intensive replacement for stereology.

View Article and Find Full Text PDF
Article Synopsis
  • Bronchopulmonary dysplasia (BPD) is a common issue in preterm infants causing ineffective gas exchange due to poor lung development, linked to elevated levels of miR-34a in myofibroblast cells.
  • Deleting miR-34a in mouse models showed protective effects against lung damage caused by high oxygen levels, indicating its role in lung architecture disruption.
  • Targeting the miR-34a pathway may offer new ways to improve lung development and treat BPD in preterm infants.
View Article and Find Full Text PDF
Article Synopsis
  • Tcf21 is a crucial transcription factor for mesenchymal development in various organs, particularly in embryonic lung mesenchyme, where its absence leads to underdeveloped lungs.
  • Researchers tracked Tcf21-expressing cells from embryonic stages to adulthood, discovering that Tcf21 progenitor cells differentiate into specific cell types, including lipofibroblasts and interstitial fibroblasts after embryonic day 15.5.
  • Elevated expression of lipid metabolism genes in Tcf21 lineage cells and the effect of Tcf21 overexpression on lipid accumulation suggests that Tcf21 plays a significant role in regulating lipofibroblast functions.
View Article and Find Full Text PDF

Background: Gas exchange represents the key physiological function of the lung, and is dependent upon proper formation of the delicate alveolar structure. Malformation or destruction of the alveolar gas-exchange regions are key histopathological hallmarks of diseases such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis; all of which are characterized by perturbations to the alveolo-capillary barrier structure. Impaired gas-exchange is the primary initial consequence of these perturbations, resulting in severe clinical symptoms, reduced quality of life, and death.

View Article and Find Full Text PDF

Pulmonary diseases such as chronic obstructive pulmonary disease, lung fibrosis, and bronchopulmonary dysplasia are characterized by the destruction or malformation of the alveolar regions of the lung. The underlying pathomechanisms at play are an area of intense interest since these mechanisms may reveal pathways suitable for interventions to drive reparative processes. Lipid-laden fibroblasts (lipofibroblasts) express the Perilipin 2 (Plin2) gene-product, PLIN2, commonly called adipose-differentiation related protein (ADRP).

View Article and Find Full Text PDF

The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing.

View Article and Find Full Text PDF

ACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial.

View Article and Find Full Text PDF
Article Synopsis
  • Postnatal lung maturation leads to the formation of numerous small alveoli and thinner septal walls, which increases gas exchange efficiency.
  • Disorders like bronchopulmonary dysplasia (BPD) disrupt this process, resulting in larger alveoli and thicker walls, hindering effective gas exchange.
  • A study observed the changes in lung structure of C57BL/6J mice over 22 months, finding peaks and declines in alveolar density, progressive thinning of septal walls, and notable sex differences in alveoli numbers related to lung volume.
View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange.

View Article and Find Full Text PDF

Inflammation-induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia-induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10 versus Fgf10 pups was investigated.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth characterized by blunted post-natal lung development. BPD can be modelled in mice by exposure of newborn mouse pups to elevated oxygen levels. Little is known about the mechanisms of perturbed lung development associated with BPD.

View Article and Find Full Text PDF

A reduced number of alveoli is the structural hallmark of diseases of the neonatal and adult lung, where alveoli either fail to develop (as in bronchopulmonary dysplasia), or are progressively destroyed (as in chronic obstructive pulmonary disease). To correct the loss of alveolar septa through therapeutic regeneration, the mechanisms of septa formation must first be understood. The present study characterized platelet-derived growth factor receptor-α-positive (PDGFRα(+)) cell populations during late lung development in mice.

View Article and Find Full Text PDF

Although the pulmonary interstitial lipofibroblast (LF) has been widely recognized in rat and mouse lungs, their presence in human lungs remains controversial. In a recent issue of the Journal, Tahedl and associates (Tahedl D, Wirkes A, Tschanz SA, Ochs M, Mühlfeld C. Am J Physiol Lung Cell Mol Physiol 307: L386-L394, 2014) address this controversy and provide the most detailed stereological analysis of LFs in mammals other than rodents.

View Article and Find Full Text PDF

Octamer binding trascription factor 4 (Oct4) is a transcription factor of POU family specifically expressed in embryonic stem cells (ESCs). A role for maintaining pluripotency and self-renewal of ESCs is assigned to Oct4 as a pluripotency marker. Oct4 can also be detected in adult stem cells such as bone marrow-derived mesenchymal stem cells.

View Article and Find Full Text PDF

Rationale: Pulmonary hypertension (PH) is a life-threatening disease, characterized by pulmonary vascular remodeling. Abnormal smooth muscle cell proliferation is a primary hallmark of chronic hypoxia-induced PH. Essential for cell growth are alterations in the intracellular Ca(2+) homeostasis.

View Article and Find Full Text PDF

Alveolar type-II cells (ATII cells) are lung progenitor cells responsible for regeneration of alveolar epithelium during homeostatic turnover and in response to injury. Characterization of ATII cells will have a profound impact on our understanding and treatment of lung disease. The identification of novel ATII cell-surface proteins can be used for sorting and enrichment of these cells for further characterization.

View Article and Find Full Text PDF

Vascular endothelial growth factor-A (VEGF-A) responsive effects mediated via the receptors fetal liver kinase-1 (flk-1) and fms-like tyrosine kinase (flt-1), are key processes of pulmonary vascular development. Flk-1 has been shown to be involved in early embryonic lung epithelial to endothelial crosstalk and branching morphogenesis. Recent reports suggested a role of VEGF-A in lung epithelial cell function.

View Article and Find Full Text PDF

Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation.

View Article and Find Full Text PDF