Publications by authors named "Katrien V Bernaerts"

In this study, we present a new synthesis methodology based on photo-crosslinking-assisted continuous precipitation polymerization which allows controlling the distribution of crosslinks in microgels. In our approach we substituted conventional crosslinking agent by a comonomer carrying photo-crosslinkable 4-oxocyclopent-2-en-1-yl group. Microgel size, morphology, distribution of crosslinks and packing density of the polymer chains are studied as a function of retention time (Rt) in the flow reactor.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the synthesis of polymer coatings using renewable resources, seeking to merge the benefits of water-borne and solvent-borne coatings.
  • After polymerization, a renewable compound, 4-oxocyclopentenyl acrylate (4CPA), is capable of forming cross-linked structures when exposed to UV light, leading to impressive physical properties in the final products.
  • The research finds that the resulting latexes from the polymerization process are stable, environmentally friendly, and can create flexible to rigid films, making them suitable for use as barriers in paper coatings.
View Article and Find Full Text PDF

Acrylic photopolymer resins are widely used in stereolithographic 3D printing. However, the growing demand for such thermosetting resins is weighing on global issues such as waste management and fossil fuel consumption. Therefore, there is an increasing demand for reactive components that are biobased and enable recyclability of the resulting thermoset products.

View Article and Find Full Text PDF

Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands.

View Article and Find Full Text PDF

Common poly(lactide--glycolide) (-PLGA) has emerged as a biodegradable and biocompatible material in tissue engineering. However, the poor hydrophilicity and elasticity of -PLGA lead to its limited application in tissue engineering. To this end, an amphiphilic crosslinked four-armed poly(lactic--glycolide) was prepared.

View Article and Find Full Text PDF

α-Amino acid based polyester amides (PEAs) are promising candidates for additive manufacturing (AM), as they unite the flexibility and degradability of polyesters and good thermomechanical properties of polyamides in one structure. Introducing α-amino acids in the PEA structure brings additional advantages such as (i) good cytocompatibility and biodegradability, (ii) providing strong amide bonds, enhancing the hydrogen-bonding network, (iii) the introduction of pendant reactive functional groups, and (iv) providing good cell-polymer interactions. However, the application of α-amino acid based PEAs for AM via fused deposition modeling (FDM), an important manufacturing technique with unique processing characteristics and requirements, is still lacking.

View Article and Find Full Text PDF

This study aims to assess kinetic modelling of the solid-liquid extraction process of total polyphenolic compounds (TPC) from apple pomace (AP). In this regard, we investigated the effects of temperature and solvent (i.e.

View Article and Find Full Text PDF

The degradation of acetal derivatives of the diethylester of galactarate (GalX) was investigated by electron paramagnetic resonance (EPR) spectroscopy in the context of solvent-free, high-temperature reactions like polycondensations. It was demonstrated that less substituted cyclic acetals are prone to undergo radical degradation at higher temperatures as a result of hydrogen abstraction. The EPR observations were supported by the synthesis of GalX based polyamides via ester-amide exchange-type polycondensations in solvent-free conditions at high temperatures in the presence and in the absence of radical inhibitors.

View Article and Find Full Text PDF

There is an increasing urge to make the transition toward biobased materials. Lignin, originating from lignocellulosic biomass, can be potentially valorized as humic acid (HA) adsorbents lignin-based mesoporous carbon (MC). In this work, these materials were synthesized for the first time starting from modified lignin as the carbon precursor, using the soft-template methodology.

View Article and Find Full Text PDF

A better understanding of cancer stem cells (CSCs) is essential for research on cancer therapy and drug resistance. Currently, increasingly more investigations are focused on obtaining CSCs to study the mechanism of their enhanced malignancy. In this work, three kinds of double-network hydrogels (PEMM/alginate), consisting of poly(ethylene glycol) (PEG) covalently cross-linked poly(methyl vinyl ether--maleic acid) (P(MVE--MA)) (network 1, denoted as PEMM) and Sr (or Ca, Fe) ionically cross-linked alginates (network 2, denoted as SrAlg, CaAlg, or FeAlg), were prepared.

View Article and Find Full Text PDF

In recent decades, in vitro three-dimensional (3D) cell culture has been rapidly developed and widely used in many biomedical fields. Based on this background, a kind of self-assembled supramolecular hybrid hydrogel materials based on host-guest interaction of β-cyclodextrin (βCD) and adamantane (Ad) is designed for 3D cell culture. First, βCD is grafted to poly(methyl vinyl ether--maleic acid) (PMM) to obtain the host polymers of βCD-grafted-PMM (PMM-βCD).

View Article and Find Full Text PDF

Chitooligosaccharides (CHOS) are oligomers of β-(1-4) linked N-acetylglucosamine and D-glucosamine that are produced from chitin or chitosan using different enzymatic or chemical methods. CHOS are water-soluble and non-cytotoxic with diverse bioactivities such as antibacterial, anti-inflammation, anti-obesity, anti-tumor and antioxidant. These biological features make CHOS promising compounds for several medical and food applications.

View Article and Find Full Text PDF

Melt extrusion of thermoplastic materials is an important technique for fabricating tissue engineering scaffolds by additive manufacturing methods. Scaffold manufacturing is commonly achieved by one of the following extrusion-based techniques: fused deposition modelling (FDM), 3D-fiber deposition (3DF), and bioextrusion. FDM needs the input material to be strictly in the form of a filament, whereas 3DF and bioextrusion can be used to process input material in several forms, such as pellets or powder.

View Article and Find Full Text PDF

As one of the nonenzymatic cell-harvesting technologies, a thermal-responsive surface based on poly(2-oxazoline)s has achieved initial success in supporting the adhesion and thermal-induced detachment of animal cells. However, because of the laborious preparation procedure, this technique was only limited to research purposes. In this work, through using poly(glycidyl methacrylate) (PGMA) as the anchor layer, poly(2-propyl-2-oxazoline)s (PPOx) were grafted onto glass wafers through a facile two-step coating and annealing procedure for nonenzymatic cell harvesting.

View Article and Find Full Text PDF

Microwave assisted polycondensation for the synthesis of (partially) biobased polyazomethines in water (hydrothermal polymerization) was investigated for the first time in this study. The polyazomethines prepared via this environmentally friendly and simple method show comparable characteristics as the polymers prepared via traditional methods in organic solvents.

View Article and Find Full Text PDF

Pyrazines are an underreported class of N-heterocycles available from nitrogen-rich biomass presenting an interesting functional alternative for current aromatics. In this work, access to pyrazines obtained from amino acids by using the 90 year old Dakin-West reaction was explored. After a qualitative screening several functional proteinogenic amino acids proved good substrates for this reaction, which were successfully scaled to multigram scale synthesis of the corresponding intermediate α-acetamido ketones.

View Article and Find Full Text PDF

The cationic ring-opening polymerization of acetals is prone to cyclization of the polymer chains. This is also the case for the polymerization of 1,3-dioxolane. Literature states that this cyclization can be reduced by applying the Active Monomer mechanism, at least if no competition with the Active Chain End mechanism occurs.

View Article and Find Full Text PDF

The controlled polymerization of a new biobased monomer, 4-oxocyclopent-2-en-1-yl acrylate (4CPA), was established via reversible addition-fragmentation chain transfer (RAFT) (co)polymerization to yield polymers bearing pendent cyclopentenone units. 4CPA contains two reactive functionalities, namely, a vinyl group and an internal double bond, and is an unsymmetrical monomer. Therefore, competition between the internal double bond and the vinyl group eventually leads to gel formation.

View Article and Find Full Text PDF

A bio-derived monomer called 2,3:4,5-di--isopropylidene-galactarate acid/ester (GalXMe) has great potential in polymer production. The unique properties of this molecule, such as its rigidity and bulkiness, contribute to the good thermal properties and appealing transparency of the material. The main problem, however, is that like other biobased materials, the polymers derived thereof are very brittle.

View Article and Find Full Text PDF

Biotechnological processes are typically perceived to be greener than chemical processes. A life cycle assessment (LCA) was performed to compare the chemical and biochemical synthesis of lactones obtained by Baeyer-Villiger oxidation. The LCA is prospective (based on experiments at a small scale with primary data) because the process is at an early stage.

View Article and Find Full Text PDF

This research focuses on the preparation of biobased copolyamides containing biacetalized galactaric acid (GalX), namely, 2,3:4,5-di--isopropylidene-galactaric acid (GalXMe) and 2,3:4,5-di--methylene-galactaric acid (GalXH), in bulk by melt polycondensation of salt monomers. In order to allow the incorporation of temperature-sensitive sugar-derived building blocks into copolyamides at temperatures below the degradation temperature of the monomers and below their melting temperatures, a clever selection of salt monomers is required, such that the sugar-derived salt monomer dissolves in the other salt monomers. The polymerization was investigated by temperature dependent FT-IR and optical microscopy.

View Article and Find Full Text PDF

Although Baeyer-Villiger monooxygenases (BVMOs) have gained attention in recent years, there are few cases of their upscaled application for lactone synthesis. A thermostable cyclohexanone monooxygenase from (TmCHMO) was applied to the oxidation of 3,3,5-trimethylcyclohexanone using a glucose dehydrogenase (GDH) for cofactor regeneration. The reaction progress was improved by optimizing the biocatalyst loading, with investigation into oxygen limitations.

View Article and Find Full Text PDF

Unlabelled: Elastin and collagen are the two main components of elastic tissues and provide the tissue with elasticity and mechanical strength, respectively. Whereas collagen is adequately produced in vitro, production of elastin in tissue-engineered constructs is often inadequate when engineering elastic tissues. Therefore, elasticity has to be artificially introduced into tissue-engineered scaffolds.

View Article and Find Full Text PDF

Background: It is widely accepted that the poor thermostability of Baeyer-Villiger monooxygenases limits their use as biocatalysts for applied biocatalysis in industrial applications. The goal of this study was to investigate the biocatalytic oxidation of 3,3,5-trimethylcyclohexanone using a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) for the synthesis of branched ϵ-caprolactone derivatives as building blocks for tuned polymeric backbones. In this multi-enzymatic reaction, the thermostable cyclohexanone monooxygenase was fused to a phosphite dehydrogenase (PTDH) in order to ensure co-factor regeneration.

View Article and Find Full Text PDF

Motivation: Bioinformatics tools that predict protein stability changes upon point mutations have made a lot of progress in the last decades and have become accurate and fast enough to make computational mutagenesis experiments feasible, even on a proteome scale. Despite these achievements, they still suffer from important issues that must be solved to allow further improving their performances and utilizing them to deepen our insights into protein folding and stability mechanisms. One of these problems is their bias toward the learning datasets which, being dominated by destabilizing mutations, causes predictions to be better for destabilizing than for stabilizing mutations.

View Article and Find Full Text PDF