Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex.
View Article and Find Full Text PDFBackground: Neuronal Ca dyshomeostasis and hyperactivity play a central role in Alzheimer's disease pathology and progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer's disease contributes to increased Ca influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential.
View Article and Find Full Text PDFAlthough a wide variety of genetic and nongenetic Alzheimer's disease (AD) risk factors have been identified, their role in onset and/or progression of neuronal degeneration remains elusive. Systematic analysis of AD risk factors revealed that perturbations of intraneuronal signalling pathways comprise a common mechanistic denominator in both familial and sporadic AD and that such alterations lead to increases in Aβ oligomers (Aβo) formation and phosphorylation of TAU. Conversely, Aβo and TAU impact intracellular signalling directly.
View Article and Find Full Text PDFBis-tetraazamacrocycles such as the bicyclam AMD3100 (1) are a class of potent and selective anti-HIV-1 agents that inhibit virus replication by binding to the chemokine receptor CXCR4, the coreceptor for entry of X4 viruses. By sequential replacement and/or deletion of the amino groups within the azamacrocyclic ring systems, we have determined the minimum structural features required for potent antiviral activity in this class of compounds. All eight amino groups are not required for activity, the critical amino groups on a per ring basis are nonidentical, and the overall charge at physiological pH can be reduced without compromising potency.
View Article and Find Full Text PDFThe chemokine receptor CXCR4 functions as one of the HIV-1 coreceptors and can be considered as an attractive target for the development of novel anti-HIV drugs. Here, we investigated the effect of its two known N-glycosylation sites g1 (NYT) and g2 (NVS) on the antiviral potential of several classes of entry inhibitors. The lack of g1 clearly affected the binding of the amino-terminal directed 2B11 mAb, but not the 12G5 mAb.
View Article and Find Full Text PDFThe chemokine receptor CXCR3 can exhibit weak coreceptor function for several human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical isolates. These viruses produced microscopically visible cytopathicity in U87.CD4.
View Article and Find Full Text PDFThe chemokine receptors CCR5 and CXCR4 function as coreceptors for human immunodeficiency virus (HIV) and are attractive targets for the development of anti-HIV drugs. The most potent CXCR4 antagonists described until today are the bicyclams. The prototype compound, AMD3100, exhibits potent and selective anti-HIV activity against CXCR4-using (X4) viruses and showed antiviral efficacy in X4 HIV-1-infected persons in a phase II clinical trial.
View Article and Find Full Text PDFThe chemokine receptors CXCR4 and CCR5 are the main coreceptors used by the T-cell-tropic (CXCR4-using, X4) and macrophage-tropic (CCR5-using, R5) HIV-1 strains, respectively, for entering their CD4+ target cells. In this review, we focus on the function of these chemokine receptors in HIV infection and their role as novel targets for viral inhibition. Besides some modified chemokines with antiviral activity, several low-molecular weight CCR5 and CXCR4 antagonistic compounds have been described with potent antiviral activity.
View Article and Find Full Text PDFObjective: To evaluate the anti-HIV-1 activity of the cyclotriazadisulfonamide CADA against primary isolates in vitro and the combination of CADA with approved anti-HIV drugs for potential synergy.
Methods: Peripheral blood mononuclear cells (PBMC) were treated with CADA and infected with 16 different clinical isolates. After 8 days of infection, the median inhibitory concentration (IC50) was calculated from the p24 viral antigen content in the supernatant.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages.
View Article and Find Full Text PDFThe plant lectins derived from Galanthus nivalis (Snowdrop) (GNA) and Hippeastrum hybrid (Amaryllis) (HHA) selectively inhibited a wide variety of human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical (CXCR4- and CCR5-using) isolates in different cell types. They also efficiently inhibited infection of T lymphocytes by a variety of mutant virus strains. GNA and HHA markedly prevented syncytium formation between persistently infected HUT-78/HIV cells and uninfected T lymphocytes.
View Article and Find Full Text PDFBackground: Chemokines drive the migration of leukocytes via interaction with specific G protein-coupled 7-transmembrane receptors. The chemokine ligand/receptor pair stromal cell-derived factor-1 (SDF-1, CXCL12)/CXCR4 is gaining increasing interest because of its involvement in the metastasis of several types of cancer and in certain inflammatory autoimmune disorders such as rheumatoid arthritis. In addition, CXCR4 serves as an important coreceptor for cellular entry of T-tropic strains of human immunodeficiency virus (HIV).
View Article and Find Full Text PDFBackground: CCR5 and CXCR4 are the two main coreceptors essential for HIV entry. Therefore, these chemokine receptors have become important targets in the search for anti-HIV agents. Here, we describe the establishment of a novel CD4+ cell line, U87.
View Article and Find Full Text PDFThe chemokine receptor CXCR4 is the main coreceptor used by T-tropic X4 HIV-1 strains to infect its target T cells. It has been proven that the CXCR4 expression level in T cells is strongly up-regulated by interleukin (IL)-4, a Th2-type cytokine that is secreted preferentially in HIV-infected patients in a later stage of disease. This results in an enhancement of HIV-1 replication in CD4+ T-lymphocytes.
View Article and Find Full Text PDFThe interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp(171) and Asp(262). We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.
View Article and Find Full Text PDFBackground: The chemokine receptors CXCR4 and CCR5 are the main coreceptors for human immunodeficiency virus (HIV) 1 to enter its target cells. The antiviral activity of their natural ligands (stromal cell-derived factor 1 [SDF-1], regulated on activation normal T-cell expressed and secreted, (RANTES) and macrophage inflammatory proteins 1alpha and 1beta, MIP-1alpha and MIP-1beta) and the finding that individuals deficient in CCR5 are relatively resistant to HIV infection led to the concept that chemokine receptor antagonists can play an important role in anti-HIV therapy. AMD3100, the prototype compound of the bicyclams, is one of the most potent and selective CXCR4 antagonists described to date.
View Article and Find Full Text PDFThe novel antiviral agent cyclotriazadisulfonamide (CADA) inhibited human immunodeficiency virus (HIV) (IC50, 0.3-3.2 microM) and human herpesvirus 7 (HHV-7) infection (IC50, 0.
View Article and Find Full Text PDFThis study was undertaken to demonstrate the unique specificity of the chemokine receptor CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell combinations, affording distinct chemokine receptor specificities, revealed no interaction of AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through CCR9. In contrast, AMD3100 potently inhibited CXCR4-mediated calcium signaling and chemotaxis in a concentration-dependent manner in different cell types.
View Article and Find Full Text PDF