Background: Traumatic brain injury is expected to become the major cause of death and disability for children and young adults by the year 2020. One of the most frequent and most morbid pathologies resulted from a head trauma is acute subdural haematoma (ASDH). For nearly one third of the ASDH cases the etiopathology directly relates to a bridging vein (BV) rupture.
View Article and Find Full Text PDFThe most frequent head injuries resulting from bicycle accidents include skull fracture acute subdural hematoma (ASDH), cerebral contusions, and diffuse axonal injury (DAI). This review includes epidemiological studies, cadaver experiments, in vivo imaging, image processing techniques, and computer reconstructions of cycling accidents used to estimate the mechanical parameters leading to specific head injuries. The results of the head impact tests suggest the existence of an energy failure level for the skull fracture, specific for different impact regions (22-24J for the frontal site and 5-15J for temporal site).
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
March 2015
To understand the mechanopathogenesis of brain lesions, finite element (FE) head models are used. There is a broad range of material properties, contact interfaces and integration schemes used for the different parts in current FE head models. The effect of material behaviour and contact definitions on a head impact analysis is reported in the literature, whereas the effect of FE integration schemes is a rather unexplored domain.
View Article and Find Full Text PDF